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ABSTRACT 

 
Industrial Geometry aims at unifying existing and developing new methods and algorithms for a 
variety of application areas with a strong geometric component. These include CAD, CAM, 
Geometric  Modeling, Robotics, Computer Vision and Image Processing, Computer Graphics and 
Scientific Visualization. The methods are mainly taken from classical geometry, computational 
geometry, CAGD and various branches of applied and industrial mathematics.  In this paper, 
Industrial Geometry is illustrated via the fruitful interplay of the areas indicated above in the 
context of novel solutions of CAD related, geometric optimization problems: approximation with 
general NURBS curves and surfaces, approximation with special surfaces for applications in 
architecture and manufacturing, and registration problems for industrial inspection and 3D model 
generation from measurement data. 
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1. INTRODUCTION 

During the past decades, geometric methods have 
played an increasingly important role in a variety of 
areas dealing with computing for industrial applications; 
these include Computer-Aided Design and 
Manufacturing, Geometric Modeling, Computational 
Geometry, Robotics, Computer Vision, Pattern 
Recognition and Image Processing, Computer Graphics 
and Scientific Visualization. 
 
These areas originated from different requirements in 
specific applications and thus they have seen a rather 
disjunct development. In fact, very similar problems 
have been treated by different communities. These 
communities still have different favorite solutions to 
nearly the same problems. Let us illustrate this at hand 
of curve approximation. According to industry 
standards, the CAD approach uses B-spline curves and 
a method for data fitting which iterates between 
parameter estimation and linear least squares 
approximation [9], [28]. Computer Vision and Image 
Processing developed another method, active contours 
[4], [10]. These have been originally formulated as 
parametric curves. Nowadays, the advantages of 
(discretized) implicit representations and the formulation 
of the curve evolution via partial differential equations in 
the level set method [14], [25] are highly appreciated, in 

particular for difficult curve approximation problems 
which arise in image segmentation. Curve 
approximation also appears in higher dimensional 
spaces: For example, in the space of rigid body motions 
it leads to motion design for Robotics [13] or Computer 
Animation. 
 
In recent years, these different areas of research have 
started to become increasingly interconnected, and have 
even begun to merge. A driving force in this process is 
the increasing complexity of applications, where one 
field of research alone would be insufficient to achieve 
useful results. Novel technologies for acquisition and 
processing of data lead to new and increasingly 
challenging problems, whose solution requires the 
combination of techniques from different branches of 
applied geometry. The thereby emerging research area, 
which aims at unifying existing and developing new 
methods and algorithms for a variety of application 
areas with a strong geometric component, shall be called 
Industrial Geometry. 
 
Let us continue the example from curve approximation 
addressed above. The viewpoint of Industrial Geometry 
would be to investigate the various algorithms from a 
common perspective. Since all available algorithms are 
solving nonlinear geometric optimization problems, it is 
appropriate to study and compare known approaches 
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from the optimization perspective. In the present paper, 
we will point to recent results in this direction. 
It is impossible to outline all major current research 
streams in Industrial Geometry in a short conference 
paper. Therefore, we will focus just on a few topics. We 
will briefly look at the level set method and on hybrid 
data structures for geometric computing. The major part 
of this paper is devoted to geometric optimization 
problems which involve distance functions. Here we will 
present a survey with some new results on a recently 
developed class of optimization algorithms, which can 
be called squared distance minimization. The benefits of 
the optimization viewpoint rather than the perspective of 
a specific application will become obvious. With nearly 
the same algorithms we can solve a wide class of curve 
and surface approximation problems and a number of 
registration problems. 
 
2. GEOMETRY REPRESENTATIONS 

The choice of an appropriate representation of a 
geometric object is a fundamental issue for the 
development of efficient algorithms. Following a recent 
survey by L. Kobbelt [12], one may classify the basic 
types of 3D geometry representations  according to the 
following table. 
 

 unstructured structured hierarchical 

explicit point clouds binary 
voxel grid 

octree 

para-
metric 

triangle mesh NURBS subdivision 
surface 

implicit moving least 
squares 
surface 

3D grid octree, 
binary space 
partitions 

 
Tab. 1. Basic types of geometry representations. 

 
Explicit representations are meant as sequences of points 
and can be seen as maps f: N � R3. Parametric 
representations are described by maps f: R2 � R3 and 
implicit representations by trivariate functions f: R3 � R.  
In the table above, the basic data structures which are at 
our disposal are called unstructured (list, graphs; they 
have a sequential or topological ordering, respectively), 
structured (array; has a global index structure) and 
hierarchical (octrees, binary space partitions). Basic 
operations which are frequently performed within 
geometric algorithms are evaluation (computing points, 
normals, ...), queries (inside or outside, distance, closest 
point,...),  and modification of geometry and/or 
topology. The various entries in the table behave quite 
differently with respect to these operations. 
 

Whereas Computer Graphics seems to use all these 
representations by now, Computer Aided Design so far 
focusses on a few of them. This is probably not an ideal 
situation. On the other hand we see the possibility of 
achieving big progress by looking at the entire collection 
of representations, and by combining them in an optimal 
way (see 2.1). 
 
The level set method in CAD 

The implicit representation of a surfaceΦ in R3 describes 
it as zero set of a function f: R3 � R,  
 

Φ := {x ∈ R3: f(x)=0}.                     (1) 
 

Associated with f, we have a whole family of level sets,  
 

Φc := {x ∈ R3: f(x)=c=const.}.           (2) 
 
It is sometimes an advantage to view the whole family. 
In connection with curves or surfaces which evolve in 
some optimization procedure, this is a fruitful approach 
and one of the basic ingredients in the highly successful 
level set method [14], [25]. The level set method 
formulates the optimization process of the shape under 
consideration (called active curve or active surface) with 
a partial differential equation (PDE) and employs 
efficient algorithms for the numerical solution of that 
PDE on a grid. 
 
The level set method is very popular in Computer Vision, 
Image Processing and Computer Graphics [14], [23], 
[25]. We have not seen many applications of the level 
set method in CAD so far, but it can be expected that 
this picture will change. A main concern which might 
have avoided the use of the level set method, is the 
representation it is based on: an implicit representation, 
evaluated just on a grid. However, we have a variety of 
complicated shape computation problems where one 
does not need to work throughout the whole 
computation with the final NURBS representation. We 
may decouple the shape finding procedure from the final 
representation in the system. The level set method can 
be applied to shape optimization and then one applies a 
conversion procedure from level sets to NURBS. This 
conversion is briefly addressed in 4.4, but requires more 
studies for successful practical use. 
 
2.1 Hybrid geometry representations 

A promising direction for future research has been 
opened in recent research by L. Kobbelt. He proposes 
hybrid representations, which are various clever 
combinations of geometry representations. The aim is to 
use the individual parts in these combinations for those 
operations where they perform best. For example, a 
combination of a mesh with an implicit representation 
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can be applied to mesh repair. The combination of a 
polygon and a grid leads to a formulation of an active 
contour in the plane (called r-snake), which is easy to 
implement and allows us to control the topology [3]. The 
latter is an important issue for the level set method, 
whose original formulation would easily achieve changes 
in the topology of the deforming shape, but hardly allow 
us a control over that change. 
 
3. DISTANCE FUNCTIONS 
The distance function of a curve or surface M assigns to 
each point x of the embedding space the shortest 
distance d(x) of x to M. Since d is not differentiable at M 
one often uses the signed distance function, which 
agrees with d up to the sign. It is well defined for a closed 
object and takes on different signs inside and outside the 
object, respectively. In the following, we will just speak of 
the distance function for both the signed and the 
unsigned version. 
 
3.1 A view into the literature 

The distance function is an excellent example for a topic 
which has been addressed by all areas which involve 
geometric computing. Early work on the geometry of the 
distance function comes from the classical geometric 
literature of the 19th century. One looks at its graph 
surface, which consists of developable surfaces of 
constant slope and applies results of classical differential 
geometry, line and sphere geometry (for a modern 
presentation, see e.g. [21]).  
 
The level sets of the distance function of a geometric 
object M are the offsets of M, which are of particular 
importance in Computer Aided Design and 
Manufacturing (see e.g. [9], [15]). 
 
Distance functions are also basic to morphological 
operators in Image Processing [8],[24]. The distance 
function is not differentiable at points of the cut locus, 
which is a concept that appears in different variants 
(medial axis, skeleton, bisector,....) in various areas for a 
number of applications (for CAD related work, see e.g. 
[15]). 
 
Computer Graphics uses distance functions in many 
ways, for example in adaptively sampled distance fields 
[7]. These proved to be a versatile and unifying 
representation with many applications (NC simulation, 
interference checking, sculpting,...). Distance functions 
also blend well with a recent trend in Computer Graphics 
of working directly with clouds of points rather than 
meshes. 
 
Optimal robot trajectories are in a natural way related to 
shortest paths on manifolds and thus distance functions 

play a central role [13]. They also occur in obstacle 
avoidance with the potential field (barrier) approach 
[13]. 
 
Algorithms for fast computation of the distance function 
in two or three dimensions are often performed on a 
grid. One exploits the fact that the distance function has 
a normalized gradient field, i.e., it is a solution of the 
Eikonal equation ||∇f(x)||=1. The main types of 
algorithms are fast marching [25] and fast sweeping [27], 
[30]. Computational Geometry developed different types 
of algorithms for fast distance computations. We point 
especially to approximate nearest neighbor algorithms 
(see e.g. [1]), which are even working well in higher 
dimensions, where a grid based computation would 
hardly be feasible. 
 

 
 

Fig. 1. Level sets of the distance function of a point in the 
presence of obstacles. 

 
As an example, we consider the computation of the 
distance function of a geometric object Φ in the presence 
of obstacles: The function value d(x) at a point x (not in 
an obstacle) is the length of the shortest path from x to a 
point of Φ, which avoids the obstacles. Zhao's algorithm 
[30] is very well suited to solve this problem: we just 
have to mark the grid points inside the obstacles with a 
flag; these points will never be updated and therefore 
never influence the computation of the distance function 
in the admissible points of the grid. The distance function 
of Φ being a single point p in the plane, in the presence 
of some obstacles, computed with Zhao's algorithm, is 
shown in Fig. 1. We also see that this is only an 
approximation, since the precise level sets near  the point 
p should be circles. Tsai's algorithm [27] does not have 
this distortion, but on the other hand it is not easily 
extendable to the presence of obstacles. 
 
3.2 Quadratic approximants of the squared 

distance function 

In subsequent optimization algorithms we will have to 
minimize functions, which contain sums of squared 
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distances of points to a curve or surface. In order to 
achieve good local convergence, we will use a Newton 
or quasi-Newton algorithm, and this requires local 
quadratic approximants of the squared distance function 
of a curve or surface.  
 

 
 

Fig. 2. Planar curve c with Frenet frame e1, e2 in c0. The 
squared distance function of the curve c and the local quadratic 
approximant of this function in the point p are visualized by 
level sets. 
 

Such local quadratic approximants have been studied in 
[17]. We briefly summarize here the main results and 
start with the squared distance function d2(c) of a planar 
curve c. Deriving a second order approximant only 
makes sense at a smooth point p of that function, and 
thus we exclude points on the cut locus. 
 
Consider an admissible point p in the plane. The point 

c0∈ c, which is closest to p is a normal footpoint (see 
Fig. 2). Let e1, e2 denote unit tangent and normal vector 
of c at c0, respectively. In this Frenet frame, we have 
p=(0,d), with |d| being the distance of p to c. The 
curvature center k0 at c0 has coordinates (0,ρ), where  ρ 
is the inverse curvature 1/κ and thus has the same sign 
as the curvature. In that frame, the second order Taylor 
approximant Fd of the squared distance function at p is 
found to be 
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In Fig. 2 the second order Taylor approximant Fd at p is 
depicted with some level sets (ellipses). The following 
special cases should be kept in mind: 
 
1. For d=0 we get the Taylor approximant F0=x2

2 at 
the normal footpoint. This shows the following 
interesting result: At a point p of a curve c the 
second order approximant of the squared distance 

function of c and of the curve tangent T at p are 
identical. Visually, this is not unexpected since 
curvature depends on the scale. Zooming closer to 
the curve it appears less and less curved.  

2. For d � ∞, the Taylor approximant tends to 
F∞=x1

2+x2
2. This is the squared distance function to 

the footpoint c(t0).  
 
For an implementation which employs the discussed 
approximants, it is better to express them in the same 
coordinate system as the curve itself. This is done by 
viewing Fd as a weighted sum of x1

2, the squared 
distance to the normal, and x2

2, the squared distance to 
the tangent at the footpoint. If e1 ⋅ x + d1= 0 and e2 ⋅ x 
+ d2 = 0 are the Hesse normal forms of normal and 
tangent at the footpoint c0, respectively, the quadratic 
approximant reads 
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For the applications we have in mind, it can be 
important to employ nonnegative quadratic 
approximants to d2. If the approximant (4) is indefinite, 
which happens for A := d/(d-ρ) < 0, we set A to zero. 
This means we use the squared distance to the tangent at 
the footpoint. 
 
Analogous considerations can be performed for the 
squared distance function of a surface s. Given s and a 
point p, we compute the closest point s0 ∈ s to p. At p0, 
we use the principal frame, defined by the two principal 
curvature directions e1, e2 and the surface normal vector 

e3. Let κi be the (signed) principal curvature to the 
principal curvature direction ei, i = 1, 2, and let ρi = 
1/κi. Then the two principal curvature centers at the 
considered surface point s0 are expressed in the principal 
frame as ki = (0,0,ρi). It can be shown that the second 
order Taylor approximant Fd of d

2 at p=(0,0,d) is given 
by 
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4. APPROXIMATION WITH NURBS CURVES 

AND SURFACES USING SQUARED DISTANCE 

MINIMIZATION 
As input we consider a model shape M. This can be a 
curve or surface in any analytical or discrete 
representation (smoothed mesh or a sufficiently dense 
point cloud with low noise level).  The model shape M 
shall be approximated by a B-spline curve or surface. 
We will compute a geometric least squares approximant, 
where distances are measured orthogonal to the model 
shape M.  
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For the sake of simplicity in our explanation, we confine 
ourselves to planar curves, but the concept works for 
surfaces of arbitrary dimension and codimension in 
higher dimensional spaces as well. 
 
The method which is proposed here is inspired by active 
curve models from Computer Vision [4]. An initial B-
spline curve is iteratively deformed within an 
optimization algorithm. The goal is to find a B-spline 
curve 

∑
=

=
n

i

ii
dtBtc

1

)()(              (6) 

which minimizes the objective function 

∑
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=
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Here, sk := c(tk), k=1,…,N are curve points at 
preselected parameter values tk. These sampled points 
ck, called 'sensor points' in the following, must be 
sufficiently dense so that they describe the shape of the 
B-spline curve well. The objective function F is the sum 
of squared distances of the sensor points to the model 
shape M. 
We assume that the basis functions are given; for a B-
spline this requires the choice of degree and knot 
sequence before the optimization is started. The 
optimization is over the control points di. In fact, it is not 
essential that we use B-splines; any other curve scheme 
with an expression of the form (6) can be used as well. 
 
From an optimization viewpoint, we have a nonlinear 
least squares problem [6], [11]. The basic optimization 
procedure is a (stabilized) Newton algorithm, in which 
we use the local quadratic approximants of the squared 
distance discussed above. It proceeds as follows: 
1. Initialize the active curve and determine the 

boundary conditions. 
2. Repeatedly apply the following steps a.-c. until the 

approximation error or change in the approximation 
error falls below a predefined threshold: 
a. With the current control points di, compute, for 

k=1,…,N, the active curve point sk = Σi Bi(tk)di 
and a nonnegative local  quadratic 
approximant Fd

k of the squared distance 
function of the model shape M at the point sk. 

b. Compute displacement vectors ci, i=1,…,n, for 
the control points di by minimizing the function 
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 Here, λ is a given constant and Fs is a 
smoothing term, for which we use a 
combination of L2 norms of low order 
derivatives of c.  Fs is a quadratic function  in 

the unknowns ci. Since Fd
k are quadratic 

functions and the argument Σi Bi(tk)(di+ci) is 
linear in ci, also the first part of F and thus the 
function F itself is a quadratic function in the 
displacement vectors ci of the control points. 
Thus, its minimization amounts to the solution 
of a linear system of equations. 

 
c. With ci from the previous step, we replace the 

control points di by di* = di+ci. 
 

 
 

Fig. 3. One step in the curve approximation procedure.         
The curve M is approximated by a B-spline curve. 

 
Fig. 3 illustrates the algorithm. The model shape M is a 
curve which is to be approximated by a B-spline curve. 
This figure also shows an initial position of the B-spline 
curve c(t), with control points di, and the updated B-
spline curve, with control points di*, after one iteration 
step. For one of the sample points sk=c(tk) the local 
quadratic approximant Fd

k of the squared distance 
function is indicated by three of its level sets, which are 
concentric ellipses. 
 
There are various issues which need a closer discussion. 
One has to appropriately preprocess M (or better its 
distance field), such that one can quickly compute the 
required local quadratic approximants. Moreover, the 
adaption of the number of control points (knots in a B-
spline model) during the evolution is an important issue. 
Solutions to these topics are found in [29]. The authors 
of that paper call the method squared distance 
minimization (SDM). 
 

Ongoing research shows that a slight extension of the 
SDM algorithm can also optimize the weights in the full 
NURBS model. 
 
4.1 Approximation with an Active Surface 

The SDM approach to curve approximation has a 
straightforward extension to surface approximation. The 
active surface model we are using shall be of the form 
s(u,v)=Σ Bi(u,v)di, so that surface points sk to given 
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parameter values (uk,vk) depend on the control points di 
in a linear way. The quadratic function we are 
minimizing in each iteration step again consists of a 
distance part, set up via local quadratic approximants of 
the squared distance function at the sensor points, and a 
regularization term.  For more details, see [18]. An 
example is presented in Fig. 4. It shows a triangulated 
CAD surface (data was obtained by 3D laser scanning) 
and its approximating B-spline surface of bidegree (3,3) 
with 5x8 control points). 
 

 

 

 
 
Fig. 4. (Top) Model shape M is a triangle mesh, obtained by 3D 
laser scanning. (Middle) Model shape M and initial position of 
approximating B-spline surface s(u,v). (Bottom) Final B-spline 
surface s(u,v). 

 
4.2 Discussion from the viewpoint of 

optimization 

If one uses unmodified second order Taylor 
approximants Fd

k in the SDM method, the quadratic 
function (8) − without the smoothing term − is a second 
order approximant of the objective function F in (7) at 
the current position (iterate) of the active curve. For 

smooth model shapes M, the influence parameter λ of 
the smoothing part is reduced to zero in later steps 

anyway. Therefore, in this case the algorithm is a 
Newton algorithm and exhibits local quadratic 
convergence. 
 
We did, however, suggest to use only nonnegative 
approximants Fd

k. As a result of this, we do not work 
with the exact Hessian ∇ 2 F of F, but with a positive 
definite approximant to it. In this sense, it is a quasi-
Newton algorithm. Although it is not of a standard type 
such as BFGS, we expect that one can prove superlinear 
convergence. 

 
In later steps of the iteration, the sensor points will be 
very close to M already. Therefore, it is natural to use 
only the squared distance to the tangent at the footpoints 
of the sensor points as functions Fd

k. This method of 
squared tangent distance minimization (TDM) is exactly 
a Gauss Newton iteration for the solution of the 
nonlinear least squares problem at hand. Using well-
known results from optimization [11] we conclude that 
TDM exhibits quadratic convergence for a zero residual 
problem (F=0 at the minimizer, i.e., a spline fits  
precisely onto the model shape M). TDM converges 
rapidly for a small residual problem, i.e., if there are 
sufficiently many control points in the active shape so 
that it can well approximate the model shape M. Since 
we have incorporated a regularization term Fs, we have a 
similar stabilizing effect as in the Levenberg-Marquardt 
method [11]. 
 

 
 
Fig. 5. (Top) The fitting curve generated by TDM without step 
size control. (Bottom) The fitting curve generated by TDM with 
step size control (Armijo rule). 
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     (a)         (b)           (c) 

 
Fig. 6. (a) A target shape (several points arranged in a rectangular shape) and an initial position of the active B-spline curve. (b) The 
fitted curve generated by point distance minimization (PDM) in 20 iterations. (c) The fitted curve generated by SDM in 20 iterations. 
 

Even if we have a positive definite approximate Hessian, 
a good global convergence behavior would require to 
check, especially in the initial iteration steps, whether 
there is sufficient decrease in the value of the objective 
function F. We propose to apply the following global 
convergence improvement of SDM: if the new position 
of the active curve does not have sufficient decrease, one 
reduces the stepsize and uses as new control points di + 
µci,  with µ < 1, according to the Armijo rule or a similar 
stepsize strategy [11]. In Fig. 5 the necessity of a stepsize 
control is shown for an example where the the TDM 
method was used. 
 
The present formulation of SDM measures the distance 
of the active shape and the input data (the model shape 
M) orthogonal to M. This is fine if M is a smooth curve or 
a sufficiently dense point sequence with a low noise 
level. For applications with sparse data points or very 
noisy measurement data, this approach does not work. 
In that case, one has to measure the error orthogonal to 
the active shape. Thus, we have to attach the squared 
distance field to the active curve. At first sight, this is 
much more complicated than the present version. 
 
However, ongoing research shows that this approach 
can be implemented in an efficient algorithm which 
outperforms currently used methods such as the 
standard CAGD approach based on linear least squares 
approximation and parameter correction [9], [28]. Fig. 6 
shows an example for this approach: An active B-spline 
curve deforms from an initial shape (with a very uneven 
distribution of its twelve control points) towards a target 
shape. Two methods are compared, namely PDM (the 
standard CAGD method of alternation between 
parameter estimation and linear least squares fitting), 
and the SDM method. The fact that alternating 
optimization of parameters and control points is only 
linearly convergent, and can be improved by Gauss-

Newton optimization has already been addressed in 
[26]. 
 

4.3 Reconstruction of special surfaces 
Standard surface approximation methods which require 
the estimation of the parameterization are hardly 
applicable in situations where a special parametrization is  
used to efficiently capture a special surface shape. 
 

 

 

 
 
Fig. 7. (Top) Model shape M is a triangle mesh, obtained by 3D 
laser scanning. (Middle) Approximating ruled B-spline surface 
s(u,v) of bidegree (1,3) with 2×10 control points. (Bottom) 
Superposition of M and s(u,v). 
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A good example for that are ruled surfaces, which are 
obtained as B-Spline surfaces  s(u,v) of bidegree (1,n). 
The u-parameter lines are the straight lines (rulings) on 
the surface. Approximating a given model shape by a 
ruled surface has interesting applications in NC 
machining (peripheral milling with a cylindrical cutter), 
wire cut electric discharge machining or in architecture 
(see e.g. [21]). With the SDM method, approximation by 
a ruled surface becomes a simple task but boundary 
conditions have to be considered: In the case of a closed 
surface model M (see e.g. Fig. 7) the initial position of 
the active surface s(u,v) has to be chosen outside of M to 
avoid shrinking of s(u,v). In the case of an open surface 
patch M we fix in sufficient distance to M two end rulings 
of an initial shape and then let the surface flow towards 
the model shape via SDM. In each iteration, only those 
sensor points are used whose footpoints lie inside M 
(and not on the boundary). 
 

4.4 Approximating level sets by NURBS 
The SDM method can be applied to the approximation 
of an implicitly represented model shape M: f(x)=0 as 
well. In fact, SDM implicitizes the model shape M 
anyway, since it uses the distance function. The level set 
method is often stabilized by requiring that the level set 
function f is (close to) a signed distance function. If the 
output of a level set method is not yet a signed distance 
function, one can run a few iterations of a solver for the 
Eikonal equation and then achieve a signed distance 
function. Thus, we see that the output of the level set 
method as a descriptor of a model shape M is a perfect 
input for the SDM method. Local quadratic 
approximants of the squared distance function f2 can be 
computed  quickly and efficiently from  a signed distance 
function f, even if it is given only on a grid. 
 
For a really practical conversion program, one needs an 
automatic choice of a good initial shape (patch layout) 
and the incorporation of changes in the patch structure 
or degrees of freedom (e.g., adding or deleting knots) 
during the optimization. Note that sharp edges and 
features should be captured very well, which again 
requires an appropriate patch layout. This is a topic of 
current research. 
 
5. REGISTRATION BASED ON SQUARED 

DISTANCE MINIMIZATION 

For the goal of shape inspection it is of interest to find 
the optimal Euclidean motion (translation and rotation)  
that aligns a cloud of measurement points of a workpiece 
to the CAD model from which it has been manufactured. 
This makes it possible to check the given workpiece for 
manufacturing errors and to visualize and classify the 
deviations. This is one instance of a registration problem. 
Another registration problem concerns the merging of 

partially overlapping scans of the same object (typically 
available in different coordinate systems) into a single 
consistent representation in the same coordinate system. 
We will outline an SDM algorithm for the solution of the 
shape inspection problem. It involves only two rigid 
systems (point cloud and CAD model, respectively), but 
it is fundamental for the entire family of rigid registration 
problems. 
 
A well-known standard algorithm to solve the present 
registration problem is the iterative closest point (ICP) 
algorithm of Besl and  McKay [2]. Independently, Chen 
and Medioni [5] proposed a similar algorithm. Although 
these two algorithms are based on similar ideas, we will 
see later that the difference − from the viewpoint of 
optimization − is not marginal at all. Most of the literature 
is based on these algorithms and deals with a variety of 
possible improvements. An excellent summary with new 
results on the acceleration of the ICP algorithm has been 
given by Rusinkiewicz and Levoy [22]. 
 
Problem Formulation 
A set of points X0=(x1

0,x2
0,…) is given in some 

coordinate system Σ0. It shall be rigidly moved 
(registered, positioned) to  be in best alignment with a 
given surface Φ, represented in system Σ. We view Σ0 

and Σ as moving and fixed system, respectively. A 
position of X0 in Σ  is denoted by X=(x1,…). It is the 
image of X0 under some rigid body motion α. Since we 
identify positions with motions, the motions have to act 
on the same initial position. Thus, we always write 
X=α(X0). 
 
The point set X0 may be a cloud of measurement points 

on the surface of a 3D object. The surface Φ  may be the 
corresponding CAD model, another scan of the same 
object, a scan of a similar object, a mean shape in some 
class of shapes, etc. For our description, we will simply 

speak of a data point cloud  and a surface Φ (‘model 
shape’),  but have in mind that Φ  may also be given just 
as a point cloud. We will not address those additional 
issues which come up when only a  part of the data 
shape agrees with a part of the model shape. 
 
The registration problem shall be formulated in a least 
squares sense as follows. Compute the rigid body 

transformation α*, which minimizes 
 

F(α) = Σid
2(α(xi

0),Φ).           (9) 
 

Here, d2(α(xi
0),Φ) denotes the squared distance of a(xi

0) 
to Φ. If we view α : x'=a+A⋅x as a special affine map in 
R3, we have to compute its 12 parameters (a,A) under 
the constraint that A is an orthogonal matrix. Hence, the 
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present problem is a constrained nonlinear least squares 
problem [6], [11]. 
 
In a rather straightforward modification of the SDM 
method we proceed as follows. Starting with an initial 
guess, we enter an iteration. In each step, we compute at 
the current data point positions (x1,x2,…) local quadratic 
approximants Fi of the squared distance function of the 
surface Φ. One way of dealing with the rigidity 
constraints on the moving system is the use of a 
linearization, i.e., a velocity field. A possible new position 
xi,+ of a point xi is estimated with help of its velocity 
vector v(xi) = c + c × xi as  
 

 xi,+ = xi + v(xi) = xi + c + c × xi.         (10) 
 
Thus, the estimate for the value of the objective function 
F after a displacement becomes 
 

F+ = Σi Fi(xi,+) = Σi Fi(xi + c + c × xi).      (11) 
 
Since the functions Fi are quadratic, F+ is a quadratic 

function in the unknown vectors c, c ∈ R3, which 
characterize the displacement. Hence, minimization of 
F+ requires the solution of a linear system in 6 scalar 
unknowns. 
 
However, we cannot directly move the points xi with 
help of their velocity vectors v(xi) = c + c × xi. This 
would result in an affine distortion of the moving system. 
Instead, we compute from the solution (c, c) a helical 
motion which moves the points xi to new positions that 
are close to xi,+ = xi + v(xi) (for details, see [19], [20]). 
The remark on stepsize control which we have made in 
Sect. 4 applies here as well. 
 
In Fig. 8 a set of synthetically generated data points with 
Gaussian noise is registered to a model of a CAD 
workpiece. The figure shows the point cloud in its initial 
position and the final position after 15 iterations.   
 
This concept contains the two best known algorithms for 
registration. If we let Fi be the squared distance function 
to the footpoint yi∈Φ of xi, we obtain an algorithm which 
is (essentially) the ICP algorithm [2]. If Fi is taken as 

squared distance function to the tangent plane of Φ at yi, 
one obtains the algorithm by Chen and Medioni [5]. 
Since the data points xi in later iterations are very close 
to Φ, the latter method uses much better approximants 
than the former (cf. Eqn. (5)). In fact, one can show that 
ICP is essentially a gradient descent method with local 
linear convergence. The algorithm of Chen and Medioni, 
the registration analogue to the TDM method, is a 
Gauss-Newton algorithm and exhibits local quadratic 

convergence for a zero residual problem. It converges 
very well also for a small residual problem. 
 

 
 
Fig. 8. Registration of a point cloud X to model Φ. X is given in 
the initial and the aligned position. 

 
The presented SDM registration method based on a 
linearization of the motion is also just quadratically 
convergent for a zero residual problem. However, it is 
not hard to use a second order motion approximant and 
in this way achieve quadratic convergence even for a 
larger residual (stronger deviation of the set of data 
points from Φ).  The transition of the presented 
approach to the simultaneous registration of more than 
two systems  can be performed along the path described 
in [19]. 
 
6. CONCLUSION AND FUTURE RESEARCH 

Exploiting the huge body of knowledge available in 
various fields that deal with geometric computing, we 
can search for unifying methods and in this way 
simultaneously achieve progress for a number of 
applications. This is a basic philosophy behind Industrial 
Geometry and has been illustrated at hand of 
optimization problems involving distance functions. We 
expect great benefit of CAD from future research in 
Industrial Geometry. To give just one example, the 
incorporation of prior knowledge, also shape knowledge, 
into surface design and reconstruction, could be 
performed in extension of ideas from Computer Vision 
and Image Processing. These ‘smart surfaces’ would 
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certainly be a welcome addition to current design 
methods. 
 

Acknowledgements 

Part of this research has been carried out within the 
Competence Center Advanced Computer Vision and has 
been funded by the Kplus program. This work was also 
supported by the Austrian Science Fund under grant 
P16002-N05 and by the innovative project ‘3D 
Technology’ of Vienna University of Technology. 
 
7. REFERENCES 

[1] Arya, S., Mount, D. M., Netanyahu, N. S., 
Silverman, S. and Wu, A., Y., An optimal algorithm 
for approximate nearest neighbor searching, Journal 
of the ACM, Vol. 45, 1998, pp 891−923.  

[2] Besl, P. J. and McKay, N. D., A method for 
registration of 3D shapes, IEEE Trans. Pattern Anal. 

and Machine Intell., Vol. 14, 1992, pp 239−256. 
[3] Bischoff, S. and Kobbelt, L., Snakes with topology 

control, The Visual Computer, to appear.  
[4] Blake, A. and Isard, M., Active Contours, Springer, 

1998. 
[5] Chen, Y., and Medioni, G., Object modeling by 

registration of multiple range images, Image and 

Vision Computing, Vol 10, 1992, pp 145−155. 
[6] Fletcher, R., Practical Methods of Optimization, 

Wiley, 1987. 
[7] Frisken, S.,  Perry, R., Rockwood, A., and Jones, T.,        

Adaptively sampled distance fields: a general 
representation of shape for computer graphics, 
Computer Graphics (Proceedings of ACM 

SIGGRAPH 00), 2000, pp 249−254. 
[8] Heijmans, H. J. A. M., Morphological Image 

Operators, Academic Press, Boston, 1994. 
[9] Hoschek, J. and Lasser, D., Fundamentals of 

Computer Aided Geometric Design, A. K. Peters, 
Wellesley, MA, 1993. 

[10] Kass, M., Witkin, A. and Terzopoulos, D., Snakes: 
Active contour models, Intern. J. Computer Vision, 
Vol. 1, 1987, pp 321−331. 

[11] Kelley, C. T., Iterative Methods for Optimization, 
SIAM, 1999. 

[12] Kobbelt, L., Freeform shape representations for 
efficient geometry processing, 2003. http://www-
i8.informatik.rwth-aachen.de/publications/ 

[13] Latombe, J. C., Robot motion planning, 6th 
printing, Kluwer, 2001. 

[14] Osher, S. and Fedkiw, R., Level Set Methods and 
Dynamic Implicit Surfaces, Springer-Verlag, New 
York, 2003. 

[15] Patrikalakis, N. M. and Maekawa, T., Shape 
Interrogation for Computer Aided Design and 
Manufacturing, Springer, 2002. 

[16] Piegl, L. and Tiller, W., The NURBS Book, 
Springer, 1995. 

[17] Pottmann, H. and Hofer, M., Geometry of the 
squared distance function to curves and surfaces, in 
Visualization and Mathematics III, Hege, H.-C., and 

Polthier, K., eds., Springer, 2003, pp 221−242. 
[18] Pottmann, H. and Leopoldseder, S., A concept for 

parametric surface fitting which avoids the     
parametrization problem, Computer Aided 

Geometric Design, Vol. 20, 2003, pp 343−362. 
[19] Pottmann, H., Leopoldseder, S. and Hofer, M.,        

Simultaneous registration of multiple views of a 3D 
object, Intl. Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 
Vol. XXXIV, Part 3A, Commission III, 2002, pp 
265−270. 

[20] Pottmann, H., Leopoldseder, S. and Hofer, M.,        
Registration without ICP, Computer Vision and 
Image Understanding, to appear. 

[21] Pottmann, H., and Wallner, J., Computational Line 
Geometry, Springer-Verlag, 2001. 

[22] Rusinkiewicz, S. and Levoy, M., Efficient variants of 
the ICP algorithm, in Proc. 3rd Int. Conf. on 3D 
Digital Imaging and Modeling, Quebec, 2001. 

[23] Sapiro, G., Geometric Partial Differential Equations 
and Image Analysis, Cambridge Univ. Press, 
Cambridge, 2001. 

[24] Serra, J., Image Analysis and Mathematical 
Morphology, Academic Press, London, 1982. 

[25] Sethian, J. A., Level Set Methods and Fast 
Marching Methods, Cambridge University Press, 
1999. 

[26] Speer, T.,  Kuppe, M. and Hoschek, J., Global        
reparametrization for curve approximation, 
Computer Aided Geometric Design, Vol. 15, 1998, 
pp 869−877. 

[27] Tsai, Y.-S. R., Rapid and accurate computation of 
the distance function using grids, J. Comput. Phys., 
Vol. 178, No. 1, 2002, pp 175−195. 

[28] Várady, T. and Martin, R.,  Reverse Engineering, in: 
Handbook of Computer Aided Geometric Design, 
Farin, G., Hoschek, J., and Kim, M.S., eds., North 
Holland, 2002, pp 651−681. 

[29] Yang, H., Wang, W. and Sun, J., Control point 
adjustment for B-spline curve approximation,         
Computer Aided Design, Vol. 36, 2004, pp 639-
652. 

[30] Zhao, H.-K., A Fast Sweeping Method for Eikonal 
Equations, Math. Comp., to appear. 


