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ABSTRACT 
 

A trimmed surface is usually represented by a parametric surface and a set of trimming curves. 

Because of the complexity in manipulating trimmed surfaces, many CAD processes and algorithms 

cannot be applied to trimmed surfaces directly. It is thus desirable to represent a trimmed surface 

by a group of regular surfaces. In this paper, an algorithm for decomposing a trimmed surface is 

presented. First, bisectors of the Voronoï diagram developed in the parametric space are used to 

define an isolated region for every trimming curve. Feature points on the trimming curves are 

extracted by considering curvatures of the curves. Correspondence between feature points and 

vertices on the bisectors are established by considering the similarity between the trimming curves 

and the bisectors. Regions of parametric patches are then identified. Finally, a group of regular 

surfaces are constructed by interpolating a set of sampled surface points on each of the identified 

regions. 
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1. INTRODUCTION 

Trimmed surface plays an important role in CAD/CAM 

technology. However, there is no standard 

representation for trimmed surface among different 

types of CAD systems. The differences between systems 

result in difficulties for exchanging trimmed surface data. 

Moreover, there are geometric algorithms that cannot be 

directly applied to trimmed surface. For example, 

trimmed surfaces are usually the result of intersecting 

different surfaces. Deformation of a trimmed surface 

may require re-evaluating the trimming curves which is 

a time consuming process. One solution to this problem 

is to decompose a trimmed surface into other types of 

basic standard elements that can be easily recognized by 

most CAD systems. In this paper, NURBS surface is 

adopted as the basic element. A trimmed surface is 

decomposed into a set of non-intersecting NURBS 

surfaces. The union of these NURBS surfaces resembles 

the original trimmed surface. The main issue is to 

develop an algorithm for the decomposition of a 

trimmed surface. 

 

2. PREVIOUS WORK 

In general, there are two approaches for decomposing 

trimmed surfaces. Triangulation, the tessellation of a 

trimmed surface into a set of triangular facets, is the 

most popular approach. The other approach is to 

decompose a trimmed surface into regular Bezier or 

NURBS surfaces. 

In the context of triangulation, Piegl and 

Richard [8] proposed to triangulate a trimmed NURBS 

surface in the parametric space. The triangles in 

parametric space are projected to the physical space. 

Deviation between the triangles and the trimmed surface 

is evaluated. The process is repeated until the deviation 

is less than a prescribed tolerance. This gives a piecewise 

planar approximation of the trimmed surface. Cho et al. 

[2] adopted an unstructured Delaunay mesh approach 

for tessellating trimmed rational B-Spline surface. The 

algorithm constructs 2D triangulation domains that 

preserve sufficiently the shape of the corresponding 

triangles in the 3D space. Abi-Ezzi and Subramaniam [1] 

used the graphical data compilation concept to 

dynamically tessellate a trimmed NURBS. Liu et al. [7] 

proposed an algorithm for splitting irregularly trimmed 

shapes into regular convex regions which are then 

triangulated. Piegl and Tiller [9] introduced a method for 

tessellating trimmed NURBS surface into triangular 

facets based on its geometric characteristics. Cho et al. 

[3] proposed to use an auxiliary planar domain for the 

triangulation of parametric trimmed surface. 

Triangulation gives a mesh of triangular facets 

ready for rendering and visualization. However, the 

triangular facets only gives an approximation to the 

trimmed surface, further editing of the surface will 

require manipulating the triangle vertices which may not 
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be desirable. The other approach for tessellating 

trimmed surface is to decompose a trimmed surface into 

a set of Bezier and NURBS surfaces. Vries-Baayens and 

Seebregts [12] proposed a technique for decomposing 

non-rational Bezier surface based on the combined 

‘triangulation-quadrangulation’ of a trimmed surface in 

the parametric space. 

Hamann and Tsai [5] decomposed a trimmed 

NURBS surface by a set of planar, ruled surfaces in the 

parametric space. A Voronoï diagram in the parametric 

space of the trimmed surface defines regions around 

each trimming curve. Scan-lines are used to identify 

non-horizontal segments of the trimming curves. Pairs of 

these segments are linearly interpolated in the horizontal 

parametric direction thereby partitioning the parametric 

space. Surfaces corresponding to the regions are then 

created, and hence decompose the trimmed surface into 

regular surfaces. 

 

3. BRIEF DESCRIPTION 

Although Hamann and Tsai’s method effectively 

decomposes a trimmed surface into regular surfaces, the 

surfaces created are horizontal strips in the parametric 

space of the surface. This may lead to an excessive 

number of surfaces being created as the partitioning of 

the surface does not take into consideration the shapes 

and features of the surface and the trimming curves. The 

method introduced in this paper extended Hamann and 

Tsai’s approach to decompose a trimmed surface by 

considering shape features of the trimming curves and 

the surface boundaries. The result of using the method is 

a group of surface patches approximating the original 

trimmed surface with no irregular shapes on the 

boundary. There are four stages in the algorithm, 

namely, Voronoï diagram development, feature point 

determination, correspondence establishment, and 

surface approximation. 

In the first stage, Voronoï diagram of the 

trimming curves and the boundary curves is developed 

in the parametric space of the surface. The Voronoï 

diagram is constructed by locating a set of uniformly 

sampled points on the bisectors of the Voronoï diagram. 

Bisectors are then constructed by fitting cubic B-Splines 

through these data points. Feature points on all the 

curves are identified. A feature point is a sharp corner or 

a curve point whose radius of curvature to arc length 

ratio is less than a predefined value. The feature points 

identified in the 3D space are projected to the 

parametric space for further processes.  

Similar feature points and bisector vertices are 

identified. The similarities between the feature points 

and the bisector vertices are measured by comparing the 

distance between the vertices, and the angles at the 

bisector vertices. Correspondence are established by 

matching feature points to the nearest and sharpest 

bisector vertices. 

A pair of consecutive feature points and their 

corresponding bisector vertices thus defines the 

parametric region of a regular surface. In general, the 

boundary of each regular parametric patch formed 

consists of four parts: one bisector segment, one 

trimming curve segment and two correspondence links 

between the bisector and the trimming curve. A set of 

surface points corresponding to each of the parametric 

regions is sampled. B-spline surfaces interpolating these 

data points are then constructed. Details of the 

technique will be discussed in the following sections. 

 

4. REPRESENTATION OF A TRIMMED 
SURFACE 

In the following discussion, a trimmed surface is defined 

with a B-spline surface and a set of trimming curves. A 

B-spline surface is expressed as 
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where ),,( ,,,, jijijiji zyx=P  is a )1()1( +×+ mn  matrix 

of three-dimensional control points, )(, uN pi  is the i-th 

B-Spline basis function of order p in the u-direction, 0u  

and 1u  are the minimum and maximum knots in the u-

direction respectively. Similarly, )(, vN qj  is the j-th B-

Spline basis function of order q in the v-direction, 0v  

and 1v  are the minimum and maximum knots in the v-

direction respectively. A trimmed shape on the surface is 

represented as a closed loop of curves on the parametric 

space. A trimmed shape is called “trim” and the curves 

composing the trim is called trimming curves. In this 

paper, trimming curves are represented as B-Spline 

curves. Denote the i-th trim as iT , the j-th trimming 

curves on the i-th trim is expressed as 
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where ),( kkk vu=P  is a control points of the curve, 

)(, tN pk  is the k-th B-Spline basis function of order p, 0t  

and 1t  are the minimum and maximum knots of the 

curve respectively. In most cases, each curve segment of 

the trim is 1C  continuous and every trim must be 

0C continuous. The curve corresponding to the outer 

boundary is denoted as 0T . In general, the boundary 
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trim 0T  may not coincide with the boundary of the 

parametric space.  Fig. 1. shows the parametric space of 

a trimmed surface. The corresponding surface is shown 

in Fig. 2. The curves on the boundary trim are arranged 

in an anticlockwise direction while curves of the other 

trims are arranged in a clockwise direction. The dots on 

the curves in Fig. 1. represent the end points of the curve 

segments. The coordinates of the lower left corner in the 

parametric space is ),( 00 vu  and that of the upper right 

corner is ),( 11 vu . 

 

 
Fig. 1. The parametric space of a trimmed surface 

 

 

 
Fig. 2. A trimmed surface 

 

5. VORONOÏ DIAGRAM 

Based on Hamann and Tsai’s approach [5], a Voronoï 

diagram [11] is developed for the trims. A closed loop of 

bisectors defines a region containing each trim. A 

bisector is a series of straight lines with equal distance 

from the trims and the boundaries. A regular 

triangulation is constructed in the parametric space of the 

surface. For each vertex of every triangle, labels are 

assigned indicating the trim that is closest to the vertex. 

For example, if 1T  is the closest trim to a triangle vertex, 

then the label of that vertex is 1. According to the 

combination of labels in a triangle, three different cases 

are classified as listed below. 

1. All three vertices labels of the triangle are the same - 

there is no bisector vertex on the triangle edges or 

inside the triangle. 

2. There are two different labels among the three 

triangle vertices - two bisector vertices exist on the 

triangle edges whose vertices labels are different. 

3. All three vertices labels are different from each other 

- there are three bisectors cutting the edges and they 

meet inside the triangle. 

In cases 2 and 3, an iterative process is invoked to locate 

a bisector vertex that is equidistant between the two 

closest trims. For case 3, a bisector vertex equidistance 

from its three closest trims is also determined. This type 

of bisector vertex is referred to as bisector centroid. The 

bisector vertices are then connected to form loops as 

shown in Fig. 3. In the figure, there are four trims 

(including the boundary), and four bisector centroids are 

located. As a result, each trim is enclosed in a loop of 

bisectors. 

 

 
 

Fig. 3. Voronoï diagram and trims in the parametric space 

 

In order to obtain a set of evenly distributed 

points on each of the identified regions of the Voronoï 

diagram, the bisectors are approximated with cubic B-

spline curves. Fig. 4. illustrates two examples. Evenly 

distributed bisector vertices on the Voronoï diagram 

(right) and their corresponding points on the surfaces 

(left) are presented in each of the examples. The region 

between a trim and its bisector in the parametric space is 
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called a parametric tile. Each tile is to be partitioned into 

regions corresponding to a regular patch as discussed in 

the following sections.  

 

 
 

Fig. 4. Evenly distributed bisector vertices 

 

6. FEATURE POINTS 

Feature points refer to sharp turns on the trims. Since a 

feature point in the parametric space may not be a 

feature point on the surface, and vice versa, feature 

points are determined on the trims of the surface in the 

Euclidean space. The approach in [6] is adopted for 

identifying whether a data point on the trim is a sharp 

turn or not. Basically, the ratio between the total arc 

length of the trim and the radius of curvature at the data 

point is used for measuring the sharpness of a turn. For 

any point lying on a unit circle, this ratio is π2/1 . This is 

used as the threshold for identifying feature points. A 

point with a sharpness ratio less than the threshold is 

considered a feature point (Fig. 5.). Given a curve 
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If πε 2/1)(, <tji , the data point )(, tjiC  is a feature point 

of the trim. This type of feature point is referred to as 

continuous feature point.  

 

 
Fig. 5. Identifying sharp turns 

 

Since a trim is composed of one or more curve 

segments, sharp turns may exist at the junctions of the 

curves. These sharp turns are called discrete feature 

points. Consider the junction of the curves )(, tjiC  and 

],[  ),( 101, ttttji ∈+C  on trim iT . Since the curves are 0C  

continuous, 
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To identify if a junction is a discrete feature point, the 

angle between the slopes at the junction is measured. 

The angle between the slope vectors is given by 
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where )( 1, tjiC
&  and )( 01, tji +C&  are the tangent vectors of 

)( 1, tjiC  and )( 01, tji +C  respectively. In general, the 

angle θ  at a sharp turn is equal or less than 2/π  (Fig. 

6.). The parametric coordinates of the feature points are 

computed using the point projection and point inversion 

methods [10]. 

 

 
Fig. 6. Discrete feature point 
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7. VERTICES CORRESPONDENCE 

Partitioning of the surface is attained by partitioning the 

Voronoï diagram. This in turn is attained by partitioning 

the parametric tiles constructed in the previous process. 

Since a tile is a loop of bisectors enclosing a trim, a 

segment of the trim and a corresponding bisector 

segment of the tile define the parametric region of a 

regular surface. The correspondence between segments 

of the trim and that of the bisectors is established by 

considering the correspondence between the feature 

points on the trims and the bisector vertices. This is 

achieved by considering the similarity of the feature 

points and the corresponding bisector vertices. The 

approach in [6] is adopted. A trim and its bisector loop 

are each enclosed in their respective minimum enclosing 

boxes which are normalized to unit squares. A ranking 

process is performed to locate the sharpest bisector 

vertex that is closest to a feature point. If there exists any 

bisector centroids on the bisector loop, correspondence 

is established between the bisector centroids and their 

nearest data points on the trim. Lines or links connecting 

corresponding vertices, together with the corresponding 

trim and bisector segments thus partition the parametric 

space into regions for the subsequent surface 

construction. 

 

 
 

Fig. 7. Correspondence links of parametric tile: (a) Valid 

correspondence, (b) Invalid correspondence 

 

A basic criterion in establishing correspondence 

is that the line connecting a feature point and a 

corresponding bisector vertex cannot intersect any trim. 

For example, in Fig. 7., a straight line is connected 

between a feature point on the trim and its possible 

corresponding bisector vertices. The connecting lines in 

Fig. 7(b). intersect the trim at points other than the 

feature point. The corresponding bisector vertices are 

thus invalid points for the correspondence, whereas 

those bisector vertices in Fig. 7(a). are valid possible 

correspondence vertices.  
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respectively. For each parametric tile, all feature points 

on the trim and all valid bisector vertices are normalized 

using Eqn. (8). Correspondence between the feature 

points and the bisectors can then be established based 

on the normalized shapes. However, the way the shapes 

are positioned may affect the result. If the shapes are 

aligned at their centers, undesirable result may be 

obtained (Fig. 8.). In order to take into consideration the 

relative positions of the shapes, the distance between the 

shapes is used for positioning the normalized shapes. 

Denote the displacement between the shapes’ centers as, 
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In the normalized shape domain, the corresponding 
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All bisector vertices are translated by the displacement 

),( vu ′Δ′Δ for the subsequence ranking process. Given a 

feature point ),(
tt

vu ′′  on a trim, all valid bisector 

vertices ),(
bb
ii vu ′′ are ranked according to their 

normalized distance from the feature point, and the 

sharpness of the bisector at the vertex on the surface. A 

score is assigned to the bisector vertex and is expressed 

as 
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where iα  is the interior angle of the i-th bisector vertex 

on the surface and n is the total number of valid bisector 

vertices. The lower is the score of the bisector vertex, the 

higher is the vertex’s ranking. Recalling from the 

previous definition, a bisector centroid is a bisector 

vertex which is shared by three bisectors. Since a 

Trim 

Bisector 

(a) (b) 
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bisector centroid is where two or more regular patches 

meet, a bisector centroid is given a higher priority in the 

ranking process. A certain amount of score is deducted 

from Eqn. (11) if the bisector vertex being ranked is a 

bisector centroid. This increases the tendency of a 

feature point to be associated with a bisector centroid. In 

this research, 5% of the maximum value of is  is 

deducted from is  when a bisector centroid is processed. 

 If a bisector centroid is not found to correspond 

to any feature point, a data point on the trim closest to 

the bisector centroid will be selected for the 

correspondence. Throughout the process, tests are 

performed to avoid cross correspondence, i.e. a link 

intersecting with other links. In case there is no feature 

point and bisector centroid in a parametric tile, any two 

bisector vertices, which are half the bisector perimeter 

apart, will be linked to the nearest data points of the trim. 

A bisector vertex that has been connected to a feature 

point is considered as a bisector centroid in the process. 

In this way, this vertex will finally be connected to two 

feature points. The parametric tiles sharing this bisector 

centroid will share the same sets of bisector loop 

segments. This helps to avoid having a patch vertex lying 

on an edge of another patch. 

  Fig. 9. shows four examples of the partitioning 

in the parametric space. Correspondences are 

established for all the feature points and bisector 

centroids. In Fig. 9(d)., there is no feature point or 

bisector centroid on the trim and the bisector loop. In 

this case, two vertices from each of their bisectors link to 

the nearest data points on the trim. 

 

 
 

Fig. 9. Examples of correspondence 

 

1. Trim inside bisector 

2. Normalization 3. Result 

With relative position 

Without relative position Bias 

Fig. 8. The effect of relative position in normalization 

 

(a) (b) 

(c) 

(d) 
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8. SURFACE FITTING 

In the previous process, feature points on the trims and 

their corresponding bisector vertices are extracted. A pair 

of consecutive feature points defines a segment of the 

trimming curve. The bisector vertices corresponding to 

these feature points define a corresponding bisector 

segment. A trim segment and a bisector segment, 

together with the lines (or links) connecting the feature 

points and their corresponding bisector vertices defines a 

parametric region of a regular surface. However, there 

are cases when one or more bisector vertices correspond 

to a feature point. In this case, triangular patches with a 

degenerated edge are created. Parametric grids are 

constructed in the patch regions. Surface points are 

generated at the grid points for the subsequent surface 

fitting.  A local parametric coordinate system is defined 

for each parametric region. The u-direction of the patch 

is defined along the bisector and the trim segments. The 

v-direction is defined along the links connecting feature 

points and bisector vertices (Fig. 10.). Assume n as the 

number of bisector vertices on the bisector segment, n 

evenly distributed points are generated on the trim 

segment. Denote p as the order of the patches in the u-

direction. If n < p, then p – n vertices are inserted into the 

segment. A point on the trim segment and a point on the 

bisector segment are linearly interpolated to obtain 

points in the v-direction of the grid. Points on the surface 

corresponding to the grid points are computed using Eqn. 

(1). Using chord-length parameterization, a surface 

defined by each parametric region is then constructed. 

Some results are shown in Fig. 11. The grids on the 

parametric space are shown on the left. Three different 

views of the partitioned surface are shown on the right. 

Fig. 12. shows the surface of a toy car with trims for the 

windshields, the wheels and the headlights.  

 
Fig. 10. Local parametric coordinate systems 

 

Adjacent patches sharing the same common 

bisector share the same set of bisector vertices as 

sampled points on the boundaries (in the u-directions) of 

the patch. Along the local v-directions, adjacent patches 

share the same set of data points sampled on their 

common correspondence links. The patches are 

therefore 0C  continuous. 
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Fig. 11. Results of decomposing trimmed surfaces 
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Fig. 12. Decomposing a trimmed surface of a toy car 

 

 

 

 
(a) 

 

 
(b) 

 

Fig. 13. S-Shaped feature: (a) Invalid patch, (b) Valid patch 

 

1C  continuity between the patches depends on 

the number of sample points used. Increasing the 

number of sample points decreases the distance between 

the points, and hence, improves the continuity between 

the patches. In case 1C  continuity has to be ensured, the 

derivatives of the surface at the sample points along the 

common boundaries can be used as constraints in the 

interpolation process. 
There is a special case when the above surface 

fitting technique results in an undesirable surface. As 

shown in Fig. 13(a)., the S-shaped feature on the trim 

causes the extension of one of the links to intersect the 

other link. This causes the resulting surface to be twisted. 

In this respect, a degenerated patch is constructed by 

using neighboring points on the trim as shown in Fig. 

13(b). This effectively removes the S-shaped feature so 

that the normal correspondence method can be applied. 

 
9. A COMPARISON 

Both the feature-based technique and Hamann’s 

approach effectively decompose a trimmed surface into 

a set of regular B-spline surfaces.  However, using 

Hamann’s technique, the number of patches developed 

depends on the number of local extremas on the 

bisectors and trimming curves. For the feature-based 

approach, the number of patches depends on the 

number of the feature points on the trims and the 

number of bisector centroids. The maximum number of 

patches is of the order O(f + nm), where f is the total 

number of feature points, n is the number of trims, and m 

is the total number of bisector centroids. Unlike 

Hamman’s approach, the feature-based technique 

considers the boundary of a surface as a trim as well. 

One more bisector is developed for the boundary trim in 

the feature-based algorithm. As a result, one more 

parametric tile has to be processed. In general, with the 

same surface, fewer patches are usually obtained using 

Hamann’s method. However, there are cases as shown 

in Fig. 14., when the number of patches obtained with 

the feature-based approach is less than that obtained 

with Hamann’s method. This usually occurs when the 

number of extremas is larger than the number of feature 

points. Fig. 14(a). and Fig. 14(b). shows the result of 

decomposing a surface using respectively Hamann’s and 

the feature-based method. 

In the feature-based algorithm, the shape of the 

patches created depends on the shape of the trims and 

the bisectors. In most cases, the patches are four-sided. 

Degenerated patches may be avoided by not allowing 

two or more bisector vertices to correspond to the same 

feature point, or vice versa. The shapes of the patches 

created using Hamann’s method depend on the 

distribution of the extremas. Patches are degenerated 

wherever there is a single pair of adjacent maxima and 

Feature points 

Link 

Link 

Trim 

Bisector 
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minima. Moreover, narrow patches may be obtained as 

shown in Fig. 14(a). 

 
        (a)          (b) 

 
Fig. 14. An example using Hamann’s method and the feature-

based technique: (a) Result using Hamann’s method, (b) Result 

using the feature-based technique 

 

10. CONCLUSION 

A method for decomposing a trimmed surface into a set 

of regular B-spline surfaces is presented. Voronoï 

diagram is developed in the parametric space of a 

trimmed surface. Bisectors in the Voronoï diagram 

isolate the trims from each other in the parametric space. 

Feature points are detected by locating sharp turns on 

the trimming curves. Correspondence between the 

feature points and vertices on the bisectors of the 

Voronoï diagram are established. By connecting feature 

points and the corresponding bisector vertices, the 

parametric space is partitioned into regions. A set of 

surface points corresponding to points in each of the 

parametric regions is generated. A B-spline surface 

interpolating the surface points corresponding to each 

parametric region is determined. Comparing with 

Hamann’s approach, the feature-based method 

generates more patches. However the patches created 

with the feature-based method are more regular in shape 

and size. 
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