
 477

Self-intersection Removal in Triangular Mesh Offsetting

Wonhyung Jung1, Hayong Shin 2 and Byoung K. Choi 3

1Korea Advanced Institute of Science and Technology, jcircle@vmslab.kaist.ac.kr

2 Korea Advanced Institute of Science and Technology, hyshin@kaist.ac.kr
3 Korea Advanced Institute of Science and Technology, bkchoi@vmslab.kaist.ac.kr

ABSTRACT

Proposed in this paper is an efficient algorithm to remove self-intersections from the raw offset

triangular mesh. The resulting regular mesh can be used in shape inflation, tool path generation,

and process planning to name a few. Objective is to find the valid region - set of triangles defining

the outer boundary of the offset volume from the raw offset triangular mesh. Starting with a seed

triangle, the algorithm grows the valid region to neighboring triangles until it reaches triangles with

self-intersection. Then the region growing process crosses over the self-intersection and moves to

the adjacent valid triangle. Therefore the region growing traverses valid triangles and intersecting

triangles adjacent to valid triangles only. This property makes the algorithm efficient and robust,

since this method omits unnecessary traversing invalid region, which usually has very complex

geometric shape and contains many meaningless self-intersections.

Keywords: regularization, regular triangular mesh, offset, self-intersection

1. INTRODUCTION

While NURBS is de facto standard for exact curve and

surface, triangular mesh (T-mesh for short) is probably

the most popular choice for approximate shape

representation in many engineering applications

including FE analysis, tool path generation, and reverse

engineering, as well as computer graphics and

geographical information system. It is often required to

offset a T-mesh, which consists of two major steps: (1)

raw offsetting, and (2) regularization. Raw offsetting is to

obtain a T-mesh apart from the original mesh by the

given distance, and the resulting mesh may have

degenerate triangles and/or self-intersections.

Regularization is the step to remove those abnormalities.

Then, we obtain a regular T-mesh which is a 2-manifold

triangular mesh free from degenerate triangles and self-

intersections (See Fig. 1).

Computing offset model of a shape represented by a T-

mesh can be used for tool path generation and process

planning of a sculptured surface such as mold & die

(Choi et al. [2]).

Boolean operation between T-meshes (Cardan et al. [1])

is very similar to T-mesh regularization in that it finds

intersections between T-meshes and selectively collects

portions as specified by the Boolean operator. Hence

the algorithm described in this paper can be applied to

Boolean operation between T-meshes. The main

distinction is that the triangle set in Boolean operation

problem is already separated into two groups, which

makes the self-intersection search a little easier.

Simulation of deformable objects in Ref. [6],[7],[10],

[13] deals with self-collision detection and collision

response. This is similar to T-mesh regularization in that

it needs to detect self-collision efficiently. However, self-

collision points are not to be removed, but to be

repositioned and the resemblance between frames can

be exploited in order to expedite self-collision

computation because the simulation of deformable

objects needs to compute multiple frames.

In this paper, we present an efficient algorithm to obtain

the regular T-mesh from the raw offset T-mesh. A raw

offset mesh is usually achieved by simply moving

vertices in a smooth region along their normal

2-manifold triangular mesh

confining a closed volume

Input: T-Mesh with degeneracy

and/or self-intersection

Output: Regular T-Mesh

bounding the offset volume

Raw

Offset Regularize

Fig. 1. Mesh regularization.

 478

vector estimated using their incident triangles. (Smooth

region means where the angle between adjacent

triangles is small enough to be ignored.) However,

vertices in a sharp region should be handled differently.

The vertices in a sharp region are offset along the

incident triangle’s normal and the gap is filled by

inserting a spherical mesh and a cylindrical mesh during

the raw offset. For the details of raw offset process, the

readers are referred to Jun [5].

2. BASIC OBSERVATIONS

Objective is to find the valid region - set of triangles

defining the outer boundary of the offset volume from

the raw offset T-mesh. Triangles in the input raw offset

mesh can be classified into three groups: valid triangles,

invalid triangles, and partially valid triangles. Fig. 2

shows these groups and related basic observations.

Valid triangles are the ones to be entirely contained in

the valid region and remain in the mesh after the self-

intersection removal. Invalid triangles are the ones not

participating in the valid region and should be deleted

entirely. Partially valid triangles lie on the boundary

between valid region and invalid region. A partially valid

triangle has intersections with other triangles, and a

portion of a partially valid triangle is to be included in

the resulting mesh. A partially valid triangle needs to be

split into sub-triangles. Then, sub-triangles are to be

classified: valid and invalid sub-triangles.

Problem is how to classify triangles of the raw offset T-

mesh into these three groups efficiently.

Intersecting triangles are the ones intersecting with

other(s). A partially valid triangle is an intersecting

triangle. However, the converse is not true as shown in

Fig. 2. There are numerous invalid intersecting triangles.

Therefore, it is important to compute triangle-triangle

intersection only when necessary. The focus of our

algorithm to be explained in the following section is to

avoid unnecessary traversing and splitting invalid

triangles.

Fig. 2. Basic observations:

three triangle groups & valid/invalid region.

3. MESH REGULARIZATION ALGORITHM

We assume that the original T-mesh before raw offset is

a closed surface, namely, 2-manifold T-mesh not

including internal void and the input mesh for this

algorithm is obtained by offsetting the original T-mesh

outward.

Fig. 3 shows the overall procedure of the proposed

algorithm and Fig. 4 explains the steps with an example.

Step 1 is to find and delete degenerate triangles with

virtually zero area. Step 2 is to compute self-intersection

segments efficiently by constructing a bucket structure.

Then the valid region search starts with finding a valid

seed triangle in step 3. The seed triangle forms the

initial valid region. In step 4, the valid region grows

from the seed triangle to neighboring triangles. This step

also includes splitting the partially valid triangles. Once

all valid triangles are marked, the remaining invalid

triangles are removed and the self-intersection edges are

stitched by assigning topological relation between

adjacent valid triangles in the step.

3.1 Removing degenerate triangles

A degenerate triangle is the triangle with (almost) zero-

area. Removal of edges with length
1ε<l (zero length

tolerance) by edge collapse as in Hoppe [4] and

swapping diagonal edges if the minimum angle

2εα < (zero angle tolerance) are used to remove

degenerate triangles as shown Fig. 5.

Fig. 3. Overall procedure

 479

Remove
degenerate
triangles

Raw offset
T-Mesh

Compute

Self-intersection

Find a seed triangle Grow valid regions

Find all valid regions Trimming & Stitching

Remove
degenerate
triangles

Raw offset
T-Mesh

Compute

Self-intersection

Find a seed triangle Grow valid regions

Find all valid regions Trimming & Stitching

Fig. 4. An explanatory example of overall procedure.

3.2 Computing self-intersections

Brute force intersection computation requires to test all

triangle pairs, which takes)(2NO intersection

comparison for T-mesh with N triangles. Since we want

to avoid computing intersections between invalid

triangles, we need an efficient structure for reducing the

number of triangle-triangle intersection (TTI) tests.

Among many structures for such purpose, we use a

bucket structure for its simplicity, which partitions the

input T-mesh into buckets, where each bucket contains

geometrically coherent triangles less than a fixed

number (the bucket capacity C).

Constructing bucket structure starts with a single bucket

containing all triangles. If the number of triangles in a

bucket is bigger than C, the bucket is subdivided into

two by the plane splitting the longest side of its AABB

(Axis Aligned Bounding Box). Triangles crossing the

plane are stored in both of the buckets. The bucket

subdivision process is applied recursively until each

bucket contains less than C triangles or no improvement

can be made. Once the bucket structure is constructed,

the self-intersection test can be confined within a bucket.

(a) Edge collapse. (b) Edge swapping.(a) Edge collapse. (b) Edge swapping.

Fig. 5. Deleting degenerate triangles.

For each bucket, we simply compare all pairs of triangles

within a bucket. For the fast TTI test, we use ‘interval

overlap method’ suggested by Moeller [8],[9]. Each

intersection segment stores the pointers to both

participating triangles, and a triangle maintains the list of

intersection segments which belongs to it.

The bucket subdivision process requires the

computation time of
C

NNT 21 log , where T1 is

intersection testing time between the bounding box and

a triangle. Then the self-intersection test takes the

computation time of CNT2 , where T2 is intersection

testing time between two triangles.

Therefore, self-intersection computation using bucket

structure requires the computation time:

)()log(2 CNO
C

N
NO + (1)

Our empirical test shows that the self-intersection

computation time increases almost linearly given the

bucket capacity C. However, C value to minimize the

calculation time varies with the mesh size of the model.

Also, as one can see in Section 4 (empirical results), this

step (computing self-intersections) takes the majority of

total time even with bucket structure. Avenues for

further improvement on this step will be discussed in the

conclusion.

3.3 Finding a seed triangle

Input T-mesh >=< TVTM , is the raw offset T-mesh

satisfying the previously stated assumptions, where V is

the set of vertices of TM. T is the set of triangles and

their adjacency information. A seed triangle is a valid

triangle to initiate the valid region growing. Let VVC ⊂

be the set of vertices on the convex hull of V.

Obviously VC belongs to the valid region. Any triangle

Tt∈ having at least a vertex in VC is valid or partially

valid and can serve as the seed triangle. Even more

simply, a triangle touching AABB of the input T-mesh is

valid or partially valid. Among those triangles, we select

a valid triangle as the seed. (For the simplification of the

subsequent discussion, we assume that at least one

triangle touching AABB is a valid one. Note that this

assumption can be easily removed by slightly modifying

the algorithm in section 3.4.)

≤

Fig. 6. Bucket subdivision process

 480

3.4 Valid region growing

To find the valid region, we use region growing

approach starting from the seed triangle found in the

previous section. Instead of splitting all intersecting

triangles beforehand, we split only partially valid

triangles at the point of valid region growing in order not

to hassle with unnecessary invalid triangles. Detailed

algorithm of the valid region growing is composed of the

steps as follows:

1. Each triangle has a three states : unvisited,

valid, partially valid. Initially, all triangles are

marked as unvisited.

2. The seed triangle (found in Section 3.3) is

marked as valid and inserted into S, the set of

wave front triangles for region growing.

3. Go to 5 if S is empty. Otherwise, remove a

triangle T from S.

4. For each unvisited Ta adjacent to T, if Ta has

no intersections, then it is marked as valid

and inserted into S. Otherwise, Ta is marked

as partially valid and inserted into P, the set

of partially valid triangle confronted. Ta is

stored in P together with the information to

indicate the ‘entrance edge’ ep, which is the

edge shared by T and Tp. Then go to 3.

5. Go to 7 if P is empty. Otherwise, remove a

partially valid triangle Tp and its entrance

edge ep from P.

6. Sub-triangulate Tp (details in Section 3.5).

Propagate the valid region over Tp and its

counterpart triangles (as detailed in Section

3.6). If another seed triangle is found, it is

inserted into the seed queue and then go to 2.

Otherwise, go to 4.

7. The valid region growing step is completed.

(a) Input raw offset T-mesh. (b) Start from the seed triangle.

(c) Valid region grows to intersections. (d) Valid region grows across the intersection.

(e) Complete valid region growing. (f) Complete valid region growing.

(a) Input raw offset T-mesh. (b) Start from the seed triangle.

(c) Valid region grows to intersections. (d) Valid region grows across the intersection.

(e) Complete valid region growing. (f) Complete valid region growing.

Fig. 7. An explanatory example of the valid region growing.

3.5 Sub-triangulation

A partially valid triangle Tp has (possibly many)

intersection segments in it. This step is to perform two

tasks : (1) to split Tp into sub-triangles which contains

the intersection segments as their edges (Fig.8(a)), (2) to

propagate valid region within the sub-triangular mesh

(Fig.8(b)).

The detailed steps for the first task is as following :

1. Split each edges ei of Tp by all intersection

segments {si}.

2. Split each si at the intersection points among

them.

3. Sub-triangulate Tp by 2D constrained

Delaunay triangulation [11] together with

edges and intersection segments split from 1

and 2.

As shown in Fig. 8(b), the valid region growing in the

sub-triangular mesh starts from the entrance edge ep.

The sub-triangle tsub0 which is adjacent to ep is marked as

valid and becomes the seed for the valid region growing

in the sub-triangular mesh. (Note that t* denote a sub-

triangle.) Then the valid portion of Tp grows into

neighboring sub-triangles until it reaches intersection

segments, which play the role of the entrance edge for

the counterpart (partially valid) triangle Tc in the next

step described in Section 3.6.

3.6 Crossing the river

The region growing process crosses over the self-

intersection and moves to the sub-triangles of the

counterpart triangle. Fig. 9 illustrates detailed steps of

propagating into the sub-triangles of the counterpart

triangle across the intersection of a partially valid

triangle.

(a) Sub-triangulation
(b) The valid portion grows

into sub-triangles

tsub0

Triangle marked

as valid

tsub0

tsub0

Intersection

segments
Tp

Stop growing

to

Intersection

segments

Region

growing

from tsub0

(a) Sub-triangulation
(b) The valid portion grows

into sub-triangles

tsub0

Triangle marked

as valid

tsub0

tsub0

Intersection

segments
Tp

Stop growing

to

Intersection

segments

Region

growing

from tsub0

Fig. 8. Sub-triangulation & valid portion growing

in sub-triangular mesh.

 481

Start valid region growing

from Tv
Adjacent valid triangle (Tv) found

sub-triangulation

of Tp & Tctriangles marked

as valid

entrance edges (a) (b)

(d)
(c)

Start valid region growing

from Tv
Adjacent valid triangle (Tv) found

sub-triangulation

of Tp & Tctriangles marked

as valid

entrance edges (a) (b)

(d)
(c)

Fig. 9. Detailed steps of crossing the river.

This process starts by sub-triangulate the counterpart

triangle Tc as in Section 3.5. In Fig.9 (b), there are two

sub-triangles t3 and t4 of Tc adjacent to the previously

found entrance edge. (Note that t1 and t2 are sub-

triangles of Tp.) By considering the normal orientation

compatibility with Tp, the sub-triangle t4 is selected as

valid one, which serves as the valid seed triangle in the

region growing within the sub-triangular mesh of Tc,

which is similar to Section 3.5. Eventually, as shown in

Fig.9(c), Tv is found as a valid triangle and this is

inserted into S.

3.7 Trimming & Stitching

Since all partially valid triangles are replaced by sub-

triangles and all valid triangles are marked, the trimming

and stitching can be done very simply. The trimming

step is to retain valid triangles only and to remove

invalid ones. And the next step is to stitch the self-

intersection edges by assigning topological relation

between adjacent valid triangles. Fig. 10 shows the

result of trimming and stitching.

(a) After valid region growing (b) Trimming & Stitching(a) After valid region growing (b) Trimming & Stitching

Fig. 10. Trimming & stitching example.

4. RESULTS

Fig. 11 – 14 show some mesh regularization examples

removing self-intersections from the raw offset T-mesh

by the valid region growing proposed in this paper. In

each figure, the original T-mesh, its raw offset T-mesh

and self-intersections, the invalid region left after all the

valid triangles is visited by region growing, and the

resulting regular T-mesh are showed. Table 1 lists the

experimental results of these examples. As shown in Tab.

1, most of the execution time is spent by self-intersection

calculation step. The experiments were done on a PC

with Pentium 1.8GHz CPU and 1GB memory.

Time (sec)

Name
of

Triangles

of

Intersection

Segments

Self-

intersection

Calculation

Region growing

& Stitching
Total

Bunny 15,224 4,253 2 0.454 2.454

Knot 150,776 44,211 11.766 0.656 12.422

C-arm lower 173,880 14,141 19.266 2.591 21.857

Pump 256,672 35,401 50.781 3.140 53.921

Tab. 1. The experimental results

 482

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

Fig. 11. Bunny.

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

Fig. 12. Knot.

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

Fig. 13. C-arm lower.

 483

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

Fig. 14. Pump.

5. CONCLUSION & FURTHER RESEARCH

In this paper, we present the mesh regularization

algorithm using region growing from a seed triangle. The

main advantages of this method are that the region

growing traverses valid or partially valid triangles only.

This property makes the algorithm efficient and robust,

since in many practical examples the invalid region

tends to have very complex geometric shape and

contains many meaningless self-intersections. Our

algorithm skips over this invalid region traversing.

The proposed algorithm utilizes a bucket structure to

facilitate self-intersection computation. However, as

shown in Table 1, still the majority of the computation

time is consumed in the intersection finding step. This

can be improved by introducing more sophisticated

hierarchical structure, such as octree-like space

partitioning tree or object partitioning tree (OBB tree or

k-DOP tree as explained in [9]).

Furthermore, our proposed algorithm finds all the self-

intersections without separating local and global self-

intersection tests. If we can segment the raw offset mesh

model into areas having no local self-intersection, then

by computing the intersections (global intersection test)

between these areas, we may be able to reduce the

number of self-intersection test between triangles. For

developing such method, the visibility condition

described in [13] can be helpful.

Though the current implementation of the proposed

algorithm in this paper computes all intersections

beforehand, it is not necessarily the best choice. The

algorithm can be even further improved by performing

the self-intersection test only with the triangle in the

wave front of the region growing process on the fly.

This will omit the unnecessary self-intersection

computation between invalid triangles.

We assumed that the original T-mesh is a connected

closed surface and the input T-mesh is obtained by

offsetting the original T-mesh outward. These

assumptions are mainly for obtaining initial seed triangle

easily. If we can efficiently obtain seed triangles for

general T-meshes, these assumptions can be relaxed

without changing the rest part of the algorithm, so that

we can handle open meshes, multi-component meshes,

or inward offset meshes.

6. ACKNOWLEDGEMENTS

This research was supported by the Ministry of Science

and Technology of Korean government through NRL

grant.

7. REFERENCES

[1] Cardan, Y. and Perrin, E., An algorithm reducing

3D Boolean operatoins to a 2D problem: concepts

and results, Computer-Aided Design, Vol. 28, No.

4, 1996, pp 277~287

[2] Choi, B.K., Kim, D.H. and Jerard, R.B., C-space

approach to tool-path generation for die and mould

machining, Computer-Aided Design, Vol.29, No.9,

1997, pp 657-669

[3] Choi, B.K. and Jerard, R.B., Sculptured Surface

Machining – theory and applications, Kluwer

Academic Publishers, 1998

[4] Hoppe, H., Progressive meshes, ACM SIGGRAPH,

1996, pp 99-108

[5] Jun, C.S., Exact Polyhedral Machining, IFIP WG5.3

International Conference on Sculptured Surface

Machining (SSM98), 1998

[6] Lau, R. W.H., Chan, O., Luk, M., Li, F. W.B., A

Collision Detection Framework for Deformable

Objects, ACM VRST’02, November 11-13, 2002

 484

[7] Mezger, J., Kimmerle, S. and Etzmub, O., Progress

in Collision Detection and Response Techniques for

Closth Animation, Proc. Of the 10th Pacific

Conference on Computer Graphics and Application,

2002

[8] Moller, T., A Fasst Triangle-Triangle Intersection

Test, Journal of graphics tools, Vol.2, No.2, 1997,

pp 25-30

[9] Moeller, T. and Haines, E., Real-Time Rendering,

AK Peters, 1999

[10] Provot, X., Collision and Self-Collision Handling in

Cloth Model Dedicated to Design Garments,

Graphics Interface, May 1997, pp 177~189

[11] Ruppert, J., A Delaunay Refinement Algorithm for

Quality 2-Dimensional Mesh Generation, Journal of

Algorithms, Vol.18 No.3, May 1995, pp 548-585

[12] Samet, H., Applications of Spatial Data Structures -

Computer Graphcis, Image Processing and GIS,

Addison-Wesley, 1990

[13] Volino, P., Thalmann, N.M., Efficient self-collision

detection on smoothly discrretized surface

animations using geometrical shape regularity,

Computer Graphics Forum (EuroGraphics Proc.),

Vol. 13, 1994, pp 155~166

