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ABSTRACT 

 

Proposed in this paper is an efficient algorithm to remove self-intersections from the raw offset 

triangular mesh. The resulting regular mesh can be used in shape inflation, tool path generation, 

and process planning to name a few. Objective is to find the valid region - set of triangles defining 

the outer boundary of the offset volume from the raw offset triangular mesh. Starting with a seed 

triangle, the algorithm grows the valid region to neighboring triangles until it reaches triangles with 

self-intersection. Then the region growing process crosses over the self-intersection and moves to 

the adjacent valid triangle. Therefore the region growing traverses valid triangles and intersecting 

triangles adjacent to valid triangles only. This property makes the algorithm efficient and robust, 

since this method omits unnecessary traversing invalid region, which usually has very complex 

geometric shape and contains many meaningless self-intersections. 
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1. INTRODUCTION 

While NURBS is de facto standard for exact curve and 

surface, triangular mesh (T-mesh for short) is probably 

the most popular choice for approximate shape 

representation in many engineering applications 

including FE analysis, tool path generation, and reverse 

engineering, as well as computer graphics and 

geographical information system.  It is often required to 

offset a T-mesh, which consists of two major steps: (1) 

raw offsetting, and (2) regularization. Raw offsetting is to 

obtain a T-mesh apart from the original mesh by the 

given distance, and the resulting mesh may have 

degenerate triangles and/or self-intersections. 

Regularization is the step to remove those abnormalities. 

Then, we obtain a regular T-mesh which is a 2-manifold 

triangular mesh free from degenerate triangles and self-

intersections (See Fig. 1). 

Computing offset model of a shape represented by a T-

mesh can be used for tool path generation and process 

planning of a sculptured surface such as mold & die 

(Choi et al. [2]). 

Boolean operation between T-meshes (Cardan et al. [1]) 

is very similar to T-mesh regularization in that it finds 

intersections between T-meshes and selectively collects 

portions as specified by the Boolean operator. Hence 

the algorithm described in this paper can be applied to 

Boolean operation between T-meshes.  The main 

distinction is that the triangle set in Boolean operation 

problem is already separated into two groups, which 

makes the self-intersection search a little easier. 

Simulation of deformable objects in Ref. [6],[7],[10], 

[13] deals with self-collision detection and collision 

response. This is similar to T-mesh regularization in that 

it needs to detect self-collision efficiently. However, self-

collision points are not to be removed, but to be 

repositioned and the resemblance between frames can 

be exploited in order to expedite self-collision 

computation because the simulation of deformable 

objects needs to compute multiple frames. 

In this paper, we present an efficient algorithm to obtain 

the regular T-mesh from the raw offset T-mesh. A raw 

offset mesh is usually achieved by simply moving 

vertices in a smooth region along their normal 
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Fig. 1. Mesh regularization. 
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vector estimated using their incident triangles.  (Smooth 

region means where the angle between adjacent 

triangles is small enough to be ignored.)  However, 

vertices in a sharp region should be handled differently.  

The vertices in a sharp region are offset along the 

incident triangle’s normal and the gap is filled by 

inserting a spherical mesh and a cylindrical mesh during 

the raw offset.  For the details of raw offset process, the 

readers are referred to Jun [5]. 

 

2. BASIC OBSERVATIONS 

Objective is to find the valid region - set of triangles 

defining the outer boundary of the offset volume from 

the raw offset T-mesh. Triangles in the input raw offset 

mesh can be classified into three groups: valid triangles, 

invalid triangles, and partially valid triangles. Fig. 2 

shows these groups and related basic observations. 

Valid triangles are the ones to be entirely contained in 

the valid region and remain in the mesh after the self-

intersection removal. Invalid triangles are the ones not 

participating in the valid region and should be deleted 

entirely. Partially valid triangles lie on the boundary 

between valid region and invalid region. A partially valid 

triangle has intersections with other triangles, and a 

portion of a partially valid triangle is to be included in 

the resulting mesh. A partially valid triangle needs to be 

split into sub-triangles. Then, sub-triangles are to be 

classified: valid and invalid sub-triangles. 

Problem is how to classify triangles of the raw offset T- 

mesh into these three groups efficiently. 

Intersecting triangles are the ones intersecting with 

other(s). A partially valid triangle is an intersecting 

triangle. However, the converse is not true as shown in 

Fig. 2. There are numerous invalid intersecting triangles. 

Therefore, it is important to compute triangle-triangle 

intersection only when necessary. The focus of our 

algorithm to be explained in the following section is to 

avoid unnecessary traversing and splitting invalid 

triangles. 

 

 
 

Fig. 2. Basic observations: 

three triangle groups & valid/invalid region. 

3. MESH REGULARIZATION ALGORITHM 

We assume that the original T-mesh before raw offset is 

a closed surface, namely, 2-manifold T-mesh not 

including internal void and the input mesh for this 

algorithm is obtained by offsetting the original T-mesh 

outward. 

Fig. 3 shows the overall procedure of the proposed 

algorithm and Fig. 4 explains the steps with an example. 

Step 1 is to find and delete degenerate triangles with 

virtually zero area.  Step 2 is to compute self-intersection 

segments efficiently by constructing a bucket structure.  

Then the valid region search starts with finding a valid 

seed triangle in step 3.  The seed triangle forms the 

initial valid region.  In step 4, the valid region grows 

from the seed triangle to neighboring triangles. This step 

also includes splitting the partially valid triangles.  Once 

all valid triangles are marked, the remaining invalid 

triangles are removed and the self-intersection edges are 

stitched by assigning topological relation between 

adjacent valid triangles in the step. 

 

3.1 Removing degenerate triangles 

A degenerate triangle is the triangle with (almost) zero-

area. Removal of edges with length 
1ε<l (zero length 

tolerance) by edge collapse as in Hoppe [4] and 

swapping diagonal edges if the minimum angle 

2εα < (zero angle tolerance) are used to remove 

degenerate triangles as shown Fig. 5. 

 

 
 

Fig. 3. Overall procedure 
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Fig. 4. An explanatory example of overall procedure. 

 

3.2 Computing self-intersections 

Brute force intersection computation requires to test all 

triangle pairs, which takes )( 2NO  intersection 

comparison for T-mesh with N triangles. Since we want 

to avoid computing intersections between invalid 

triangles, we need an efficient structure for reducing the 

number of triangle-triangle intersection (TTI) tests.  

Among many structures for such purpose, we use a 

bucket structure for its simplicity, which partitions the 

input T-mesh into buckets, where each bucket contains 

geometrically coherent triangles less than a fixed 

number (the bucket capacity C). 

Constructing bucket structure starts with a single bucket 

containing all triangles.  If the number of triangles in a 

bucket is bigger than C, the bucket is subdivided into 

two by the plane splitting the longest side of its AABB 

(Axis Aligned Bounding Box).  Triangles crossing the 

plane are stored in both of the buckets.  The bucket 

subdivision process is applied recursively until each 

bucket contains less than C triangles or no improvement 

can be made. Once the bucket structure is constructed, 

the self-intersection test can be confined within a bucket. 

 

(a) Edge collapse. (b) Edge swapping.(a) Edge collapse. (b) Edge swapping.  
 

Fig. 5. Deleting degenerate triangles. 

For each bucket, we simply compare all pairs of triangles 

within a bucket. For the fast TTI test, we use ‘interval 

overlap method’ suggested by Moeller [8],[9].  Each 

intersection segment stores the pointers to both 

participating triangles, and a triangle maintains the list of 

intersection segments which belongs to it. 

The bucket subdivision process requires the 

computation time of
C

NNT 21 log , where T1 is 

intersection testing time between the bounding box and 

a triangle. Then the self-intersection test takes the 

computation time of CNT2 , where T2 is intersection 

testing time between two triangles. 

Therefore, self-intersection computation using bucket 

structure requires the computation time: 

)()log( 2 CNO
C

N
NO +                                             (1) 

Our empirical test shows that the self-intersection 

computation time increases almost linearly given the 

bucket capacity C. However, C value to minimize the 

calculation time varies with the mesh size of the model. 

Also, as one can see in Section 4 (empirical results), this 

step (computing self-intersections) takes the majority of 

total time even with bucket structure.  Avenues for 

further improvement on this step will be discussed in the 

conclusion. 

 

3.3 Finding a seed triangle 

Input T-mesh >=< TVTM ,  is the raw offset T-mesh 

satisfying the previously stated assumptions, where V is 

the set of vertices of TM. T is the set of triangles and 

their adjacency information. A seed triangle is a valid 

triangle to initiate the valid region growing. Let VVC ⊂  

be the set of vertices on the convex hull of V. 

Obviously VC belongs to the valid region. Any triangle 

Tt∈  having at least a vertex in VC is valid or partially 

valid and can serve as the seed triangle.  Even more 

simply, a triangle touching AABB of the input T-mesh is 

valid or partially valid.  Among those triangles, we select 

a valid triangle as the seed. (For the simplification of the 

subsequent discussion, we assume that at least one 

triangle touching AABB is a valid one. Note that this 

assumption can be easily removed by slightly modifying 

the algorithm in section 3.4.) 

 

≤

 
 

Fig. 6. Bucket subdivision process 
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3.4 Valid region growing 

To find the valid region, we use region growing 

approach starting from the seed triangle found in the 

previous section.  Instead of splitting all intersecting 

triangles beforehand, we split only partially valid 

triangles at the point of valid region growing in order not 

to hassle with unnecessary invalid triangles.  Detailed 

algorithm of the valid region growing is composed of the 

steps as follows: 

 

1. Each triangle has a three states : unvisited, 

valid, partially valid.  Initially, all triangles are 

marked as unvisited. 

2. The seed triangle (found in Section 3.3) is 

marked as valid and inserted into S, the set of 

wave front triangles for region growing. 

3. Go to 5 if S is empty. Otherwise, remove a 

triangle T from S. 

4. For each unvisited Ta adjacent to T, if Ta has 

no intersections, then it is marked as valid 

and inserted into S.  Otherwise, Ta is marked 

as partially valid and inserted into P, the set 

of partially valid triangle confronted. Ta is 

stored in P together with the information to 

indicate the ‘entrance edge’ ep, which is the 

edge shared by T and Tp. Then go to 3. 

5. Go to 7 if P is empty. Otherwise, remove a 

partially valid triangle Tp and its entrance 

edge ep from P. 

6. Sub-triangulate Tp (details in Section 3.5).  

Propagate the valid region over Tp and its 

counterpart triangles (as detailed in Section 

3.6).  If another seed triangle is found, it is 

inserted into the seed queue and then go to 2. 

Otherwise, go to 4. 

7. The valid region growing step is completed. 

 

(a) Input raw offset T-mesh. (b) Start from the seed triangle.

(c) Valid region grows to intersections. (d) Valid region grows across the intersection.

(e) Complete valid region growing. (f) Complete valid region growing.

(a) Input raw offset T-mesh. (b) Start from the seed triangle.

(c) Valid region grows to intersections. (d) Valid region grows across the intersection.

(e) Complete valid region growing. (f) Complete valid region growing.  
 

Fig. 7. An explanatory example of the valid region growing. 

 

 

3.5 Sub-triangulation 

A partially valid triangle Tp has (possibly many) 

intersection segments in it.  This step is to perform two 

tasks : (1) to split Tp into sub-triangles which contains 

the intersection segments as their edges (Fig.8(a)), (2) to 

propagate valid region within the sub-triangular mesh 

(Fig.8(b)). 

The detailed steps for the first task is as following : 

 

1. Split each edges ei of Tp by all intersection 

segments {si}. 

2. Split each si at the intersection points among 

them. 

3. Sub-triangulate Tp by 2D constrained 

Delaunay triangulation [11] together with 

edges and intersection segments split from 1 

and 2. 

 

As shown in Fig. 8(b), the valid region growing in the 

sub-triangular mesh starts from the entrance edge ep.  

The sub-triangle tsub0 which is adjacent to ep is marked as 

valid and becomes the seed for the valid region growing 

in the sub-triangular mesh. (Note that t* denote a sub-

triangle.) Then the valid portion of Tp grows into 

neighboring sub-triangles until it reaches intersection 

segments, which play the role of the entrance edge for 

the counterpart (partially valid) triangle Tc in the next 

step described in Section 3.6. 

 

3.6 Crossing the river 

The region growing process crosses over the self-

intersection and moves to the sub-triangles of the 

counterpart triangle. Fig. 9 illustrates detailed steps of 

propagating into the sub-triangles of the counterpart 

triangle across the intersection of a partially valid 

triangle. 
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Fig. 8. Sub-triangulation & valid portion growing 

in sub-triangular mesh. 
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Fig. 9. Detailed steps of crossing the river. 

 

This process starts by sub-triangulate the counterpart 

triangle Tc as in Section 3.5.  In Fig.9 (b), there are two 

sub-triangles t3 and t4 of Tc adjacent to the previously 

found entrance edge. (Note that t1 and t2 are sub-

triangles of Tp.) By considering the normal orientation 

compatibility with Tp, the sub-triangle t4 is selected as 

valid one, which serves as the valid seed triangle in the 

region growing within the sub-triangular mesh of Tc, 

which is similar to Section 3.5.  Eventually, as shown in 

Fig.9(c), Tv is found as a valid triangle and this is 

inserted into S. 

 

3.7 Trimming & Stitching 

Since all partially valid triangles are replaced by sub-

triangles and all valid triangles are marked, the trimming 

and stitching can be done very simply.  The trimming 

step is to retain valid triangles only and to remove 

invalid ones. And the next step is to stitch the self-

intersection edges by assigning topological relation 

between adjacent valid triangles.  Fig. 10 shows the 

result of trimming and stitching. 

(a) After valid region growing (b) Trimming & Stitching(a) After valid region growing (b) Trimming & Stitching
 

 
Fig. 10. Trimming & stitching example. 

 

4. RESULTS 

Fig. 11 – 14 show some mesh regularization examples 

removing self-intersections from the raw offset T-mesh 

by the valid region growing proposed in this paper. In 

each figure, the original T-mesh, its raw offset T-mesh 

and self-intersections, the invalid region left after all the 

valid triangles is visited by region growing, and the 

resulting regular T-mesh are showed. Table 1 lists the 

experimental results of these examples. As shown in Tab. 

1, most of the execution time is spent by self-intersection 

calculation step. The experiments were done on a PC 

with Pentium 1.8GHz CPU and 1GB memory. 

 

Time (sec) 

Name 
# of 

Triangles 

# of 

Intersection 

Segments 

Self-

intersection 

Calculation 

Region growing 

& Stitching 
Total 

Bunny 15,224 4,253 2 0.454 2.454 

Knot 150,776 44,211 11.766 0.656 12.422 

C-arm lower 173,880 14,141 19.266 2.591 21.857 

Pump 256,672 35,401 50.781 3.140 53.921 

 
Tab. 1. The experimental results 
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(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh
 

 
Fig. 11. Bunny. 

 

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh
 

 
Fig. 12. Knot. 

 

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh
 

 
Fig. 13. C-arm lower. 
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(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh

(a) Original T-mesh (b) Raw offset T-mesh & self-intersections

(c) Invalid region left after the valid region growing (d) Regular T-mesh
 

 

Fig. 14. Pump. 

 

 

5. CONCLUSION & FURTHER RESEARCH 

In this paper, we present the mesh regularization 

algorithm using region growing from a seed triangle. The 

main advantages of this method are that the region 

growing traverses valid or partially valid triangles only. 

This property makes the algorithm efficient and robust, 

since in many practical examples the invalid region 

tends to have very complex geometric shape and 

contains many meaningless self-intersections.  Our 

algorithm skips over this invalid region traversing. 

The proposed algorithm utilizes a bucket structure to 

facilitate self-intersection computation. However, as 

shown in Table 1, still the majority of the computation 

time is consumed in the intersection finding step.  This 

can be improved by introducing more sophisticated 

hierarchical structure, such as octree-like space 

partitioning tree or object partitioning tree (OBB tree or 

k-DOP tree as explained in [9]). 

Furthermore, our proposed algorithm finds all the self-

intersections without separating local and global self-

intersection tests. If we can segment the raw offset mesh 

model into areas having no local self-intersection, then 

by computing the intersections (global intersection test) 

between these areas, we may be able to reduce the 

number of self-intersection test between triangles. For 

developing such method, the visibility condition 

described in [13] can be helpful. 

Though the current implementation of the proposed 

algorithm in this paper computes all intersections 

beforehand, it is not necessarily the best choice.  The 

algorithm can be even further improved by performing 

the self-intersection test only with the triangle in the 

wave front of the region growing process on the fly.  

This will omit the unnecessary self-intersection 

computation between invalid triangles. 

We assumed that the original T-mesh is a connected 

closed surface and the input T-mesh is obtained by 

offsetting the original T-mesh outward.  These 

assumptions are mainly for obtaining initial seed triangle 

easily.   If we can efficiently obtain seed triangles for 

general T-meshes, these assumptions can be relaxed 

without changing the rest part of the algorithm, so that 

we can handle open meshes, multi-component meshes, 

or inward offset meshes. 
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