
 469

Geometric Constraint Solving Based on Connectivity of Graph

Gui-Fang Zhang1 and Xiao-Shan Gao2

1Tsinghua University, zhanggf@cg.cs.tsinghua.edu

2 Chinese Academy of Sciences, xgao@mmrc.iss.ac.cn

ABSTRACT

We propose a geometric constraint solving method based on connectivity analysis in graph theory,
which can be used to decompose a structurally well-constrained problem in 2D into some smaller
ones if possible. We also show how to merge two rigid bodies if they share two or three geometric
primitives in a bi-connected or tri-connected graph respectively.

Keywords: Geometric constraint solving, parametric CAD, k-connected graph, separating k-tuple,
D-tree decomposition.

1. INTRODUCTION

Geometric constraint solving (GCS) is one of the key
techniques in parametric CAD, which allows the user to
make modifications to existing designs by changing
parametric values. There are four major approaches to
geometric constraint solving: the numerical approach
[13,22,28], the symbolic computation approach [7,20],
the rule-based approach [2,6,21,30] and the graph-
based approach [3,4,15,17,24,25,27].

This paper will focus on using graph algorithms to
decompose a large constraint problem into smaller
ones. In [29], Owen proposed a GCS method based on
the tri-connected decomposition of graphs, which may
be used to reduce a class of constraint problems into
constraint problems consisting of three geometric
primitives. In [5,14], Hoffmann et al proposed a
method based on cluster formation to solve 2D and 3D
constraint problems. In [17], Joan-Arinyo et al
proposed an algorithm to decompose a 2D constraint
problem into an s-tree. This method is equivalent to
Owen's and Hoffmann's methods, but is conceptually
simpler.

The above approaches use triangles as basic patterns
to solve geometric constraint problems. In [24], Latham
and Middleditch proposed an algorithm used to
decompose a constraint problem into what we called
general construction sequence [10,11]. A similar method
based on maximal matching of bipartite graphs was
proposed in [23]. In [15], Hoffmann et al gave an
algorithm to find rigid bodies in a constraint problem.
From this, several general approaches to GCS are
proposed. In [16], Jermann et al also gave a general

approach to GCS based on the method in [15]. In [11],
a c-tree decomposition method is proposed to solve
both 2D and 3D constraint problems. The method
proposed in [15] and the c-tree method [11] can be
used to find a decomposition with the smallest
controlling problem in certain sense.

In this paper, a method based on connectivity analysis
from graph theory is proposed to decompose a
constraint graph into a decomposition tree (abbr. D-
tree). This method is a natural generalization of the
methods in [17,29] which are based on tri-connectivity
analysis of the constrained graph, and can solve
problems that can be reduced to triangles. On the other
hand, our method can be used to deal with general
problems. In Section 2, we introduce the concept of
connected graph. In Section 3, the method to split
constraint graph is proposed. In Section 4, an algorithm
to generate the D-tree is proposed. In Section 5, a
method of merging bi-connected and tri-connected
constraint graphs is proposed, followed by some
conclusions.

2. PRELIMINARIES ON CONSTRAINT GRAPHS

The geometric primitives considered in this paper are
points and lines in 2D. The geometric constraints
considered in this paper include distance constraints
between point/point, point/line and angular constraints
between line/line in 2D.

We use a constraint graph to represent a constraint
problem. The vertices of the graph represent the
geometric primitives and the edges represent the
constraints.

470

Let G=(V,E,�) (or G=(V(G),E(G),�) be a geometric
constraint graph. For any v in V, �(v) is the weight of
vertex v, i.e the number of independent parameters
used to determine the vertex, and �(V)=Σv∈V �(v). For

instance, the weight of every geometric primitive we
consider here in 2D is 2. For any e in E, �(e) presents
the weight of edge e, i.e the number of scalar equations
to represent the constraint, and �(E)=Σe∈E
�(e). For instance, in 2D the weight of the distance
constraint between two points is 1 if the distance is not
zero, otherwise it is 2.
Definition 1 Let G=(V,E,�) be a geometric constraint
graph.
(i) G is structurally over-constrained if there is an

induced subgraph H of G satisfying
�(E(H))>�(V(H))-3.

(ii)G is structurally under-constrained if it is not
structurally over-constrained and 0<�(E)<�(V)-3.

(iii)G is structurally well-constrained if it is neither
structurally under-constrained nor structurally over-
constrained.

A rigid body is a set of geometric primitives whose
position and orientation relative to each other is known
[5]. A structurally well-constrained graph defines a rigid
body in most cases. But in some special cases the
constraint problem represented by a structurally well-
constrained graph may have no solutions or an infinite
number of solutions. It is obvious that a structurally well-
constrained graph is always connected.
Definition 2 An undirected graph G=(V,E) is called
connected if for every two nodes x, y∈V, there exists a
path of edges from E joining x and y. A graph is called
disconnected if it is not connected. A graph is called k-
connected (k≥2) if there does not exist a set of k-1 or
fewer nodes V�⊂ V such that the removal of all nodes of
V′ and their incident edges from G results in a
disconnected graph.
Definition 3 Two vertices x and y of graph G are said
to be k-connected if k is the largest integer such that
there exist k vertex-disjoint paths from x to y in G. The

connectivity of x and y is denoted by κ(x, y), which is
the maximal number of vertex disjoint paths from x to y
in G.
Theorem 4 (Theorem of Whitney) A graph G=(V,E)
is k-connected if and only if κ (x, y)≥k for any two
vertices x and y of G, that is,

κ (G)=min {κ (x, y): x, y∈V}.
Definition 2, Definition 3 and Theorem 4 are

available in [1]. The complexity of the algorithm to
calculate the connectivity of a connected graph

G=(V, E) is)|||(| 22
1

EVO [1].

Theorem 5 Let G be a structurally well-constrained

graph. We have κ(G)≤ 3 in 2D.
Proof: For a graph G=(V,E), it is known that

κ(G)≤
||

||2

V

E
 from [26]. Then for a structurally well-

constrained constraint graph G, we can obtain the
bound of κ (G) explicitly. Because the constraint

problem is in 2D, |E|=2|V|-3 and
2(2| | 3)2| |

| | | |

VE

V V

−

= <4.

Thus κ (G) ≤3.
Let G=(V,E) be a connected undirected graph. A

vertex v∈V is a separating vertex for G, if the subgraph
induced by V-{v} is not connected. G is bi-connected if
it contains no separating vertex.

A pair of vertices v1, v2∈V is a separating pair for G if
the subgraph induced by V-{v1,v2} is not connected. G
is tri-connected if it contains no separating vertices and
pairs [12].

A triplet {v1,v2,v3} of distinct vertices in V is a
separating triplet of a tri-connected graph if the
subgraph induced by V-{v1,v2,v3} is not connected. G is
4-connected if it contains no separating vertices, pairs
and triplets [19].

A tuple {v1,v2,…,vk} of distinct vertices in V is a
separating k-tuple of a k-connected graph if the
subgraph induced by V-{v1,v2,…,vk} is not connected. G
is (k+1)-connected if it contains no separating i-

tuple {v1,v2, …,vi} (i≤k).

3.DECOMPOEITION OF K-CONNECTED GRAPH

In this section, let G=(V,E,�) be a geometric constraint
graph. Assuming that G is k-connected and
Vs={v1,v2,…,vk} is a separating k-tuple of G. The
subgraph of G induced by Vs is Gs=(Vs, Es, �) and Gs is
called a cut graph. A k-connected graph can be split into
separating components C1,C2,…,Cn by splitting it at the

separating k-tuple Vs. Assuming that 1≤m≤n and let

C1=
m

i 1=U Ci , C2=
n

mi 1+=
U Ci,

such that |V(C1)| ≥1 and |V(C2)| ≥1. Thus we refer to

the graphs

G
1
=(V(C1)∪Vs, E(C1)∪{(v1,v2)|v1∈V(C1),v2∈Vs})

G
2
=(V(C2)∪Vs, E(C2)∪{(v1,v2)|v1∈V(C2),v2∈Vs})

as the separating graphs of G. The graphs

G1=(V(G
1
),E(G

1
)∪Es)) and G2=(V(G

2
),E(G

2
)∪Es))

are called split graphs of G. The relation of split graphs
and the cut graph is shown in Fig.1

G2G1

C2C1

Gs

Fig. 1. The relation of split graphs and the cut graph

471

Joan-Arinyo et al defined a deficit function
deficit=2|V|-|E|-3 to compute the difference between the
number of weight of edges for a constraint graph
G=(V,E) to be structurally well-constrained and its
actual number of weight |E| in 2D [17]. Here we
generalize the deficit function to more general cases.
Definition 6 Let G=(V,E,�) be a geometric constraint
graph. We can define the deficit function associated with
G as deficit(G)=�(V)-�(E)-3.

If G is a structurally well-constrained problem,
deficit(G)=0. If G is not structurally over-constrained,
deficit(G) ≥0.

In 2D, if G is a structurally well-constrained graph and
the primitives are points and lines, for every edge
e=(u,v) in E(G), �(e)=1.
Theorem 7 Let G=(V,E,�) be a geometric constraint
graph in 2D. If G is structurally well-constrained, there is
no separating vertex in G.
Proof: Assuming that there is a separating vertex v, such
that we can split graph G into two split graphs G1 and G2
by the vertex.
Because G is structurally well-constrained, deficit(G)=0,
deficit(G1) ≥0 and deficit(G2) ≥0.
Because �(V(G))= �(V(G1))+ �(V(G2))- �(v)
and �(E(G))= �(E(G1))+ �(E(G2)),
we have
�(V(G1))+ �(V(G2))- �(v)-(�(E(G1))+ �(E(G2)))-3=0,
i.e. deficit(G1)+ deficit(G2)+(3-�(v))=0.
Because deficit(G1) ≥0 and deficit(G2) ≥0, it’s obvious
that 3-�(v)≤0. But for every primitive v we consider
here �(v)=2, so 3-�(v)>0 and there is no separating
vertex in a structurally well-constrained graph.
Theorem 8 Let Gs=(Vs,Es,�) be the cut graph induced
by a separating k-tuple (k≥2) of a k-
connected structurally well-constrained graph
G=(V,E,�) and the split graphs G1=(V(G1),E(G1),�) and
G2=(V(G2),E(G2),�). We have

deficit(G1)+ deficit(G2)= deficit(Gs).
Proof: Since graph G is structurally well-constrained,
deficit(G1) ≥0, deficit(G2) ≥0 and deficit(Gs) ≥0.
So �(Vs)-�(Es)-3≥0, �(V(G1))-�(E(G1))- 3≥0
and �(V(G2))-�(E(G2))- 3≥0.
Because �(E(G1))+�(E(G2))-�(Es)=�(V)- 3,
and �(V) -3=�(V(G1))+�(V(G2)) -�(Vs).
Thus (�(V(G1)) -�(E(G1))- 3)+�(V(G2)) -�(E(G2))- 3

=�(Vs)-�(Es)- 3.
So deficit(G1)+ deficit(G2)= deficit(Gs).
Corollary 9 Let G=(V,E,�) be a structurally well-
constrained k-connected graph, Gs=(Vs,Es,�) the cut
graph of G induced by a separating k-tuple Vs={v1,v2,
…,vk}, G1 and G2 the split graphs of graph G. G1 and G2
are structurally well-constrained if and only if Gs is
structurally well-constrained.
Proof: Because G1 and G2 are not over-constrained,

deficit(G1) ≥0 and deficit(G2) ≥0. Then deficit(Gs)=0 if
and only if deficit(G1)=0 and deficit(G2)=0, according
to Theorem 8.
Corollary 10 Let G=(V,E,�) be a structurally well-
constrained k-connected graph, Gs=(Vs,Es,�) the cut
graph of G induced by a separating k-tuple Vs={v1,v2,
…,vk}, G1 and G2 the split graphs of graph G. If
deficit(Gs)=1, only one of the split graph is structurally
well-constrained.
Proof: Because G1 and G2 are not over-constrained,
deficit(G1) ≥0 and deficit(G2) ≥0. deficit(Gs)=1 if and
only if deficit(G1)=1 and deficit(G2)=0, or deficit(G1)=0
and deficit(G2)=1 according to Theorem 8.
Corollary 11 Let Gs be the graph induced by a
separating k-tuple of a k-connected structurally well-
constrained graph G, G1 and G2 the split graphs. If Gs is
not structurally well-constrained and G1 is structurally
well-constrained, then

deficit(Gs)= deficit(G2).
Proof: This is a direct consequence of Theorem 8.
Corollary 12 For a structurally well-constrained bi-
connected constraint graph, at least one of the split
graphs is a structurally well-constrained graph in 2D.
Proof: Let {a,b} be the separating pair of a structurally
well-constraint graph G=(V,E,�), thus deficit(Gs) is 0 or
1. Then the conclusion is obvious according to the
proofs of corollary 9 and corollary 10.

This conclusion is the same as that in [17,29], based
on which Owen gave an efficient algorithm and Joan-
Arinyo et al gave an improved algorithm in 2D.

The examples shown in Fig.2 and Fig. 3 are the case
of deficit(Gs) = 0 and deficit(Gs) =1 respectively.

In the following figures, diagrams (a), (b) and (c)
represent original constraint graph, the split graphs G1
and G2 respectively.

P3

P4

P2

P3

P1

P2

P1

P2

P3

P4

(c)(b)(a)

Fig. 2. Separating pair is p2, p3, and deficit(Gs) = 0.

P2

P3

P4P4

P3

P5P1

P2

P1

P2

P3

P5

(c)(b)(a)

Fig. 3. Separating pair is p2, p3, and deficit(Gs) =1.

472

In general, a structurally well-constrained graph can

be decomposed by three ways based on connectivity
analysis.

(i) deficit(Gs)=0.
Now the split graphs G1 and G2 are structurally well-

constrained according to Corollary 9. We can solve
them separately, and merge them to obtain the solutions
to the initial problem. Here the merging step is easy for
G1 and G2 who share the same cut graph Gs. Fig. 4 is
an example of this case. The graph is split into two
structurally well-constrained graphs, which are solved
explicitly in [10].

P5

P9

P7

P8

P4

P6

P5

P1

P3

P2

P4

P6

P5

P1

P3

P2

P9

P7

P8

P4

P6

(a) (b) (c)

Fig.4. Separating triplet is p4, p5, p6 and deficit(Gs)=0

(ii) deficit(Gs)=1.
Now one of the split graphs is structurally well-

constrained according to Corollary 10. Let G1 be the
well-constrained split graph. We solve G1 first, and add
one auxiliary constraint to Gs so that Gs become a
structurally well-constrained problem denoted by Gs�.
Since Gs is part of G2 and deficit(Gs)=deficit(G2) by
Corollary 10, when replacing Gs with Gs� and adding
these auxiliary constraints to G2, G2 becomes a
structurally well-constrained problem denoted by G2�,
and can be solved separately. After getting the solution
of G1 and G2�, we can merge them to obtain the
solution to the initial problem. G2� is called the modified
split graph of G with G1. Fig. 5 is an example of this
case. In diagram(c), an auxiliary constraint between p2
and p3 is added. This problem is split into two ruler and
compass constructible triangles and a basic merging
pattern solved analytically in [10].

P2

P6

P4
P6

P4

P5

P5

P3

P7

P2

P1

P3

P7

P1

P3 P2

P7

(a) (b) (c)

 Fig.5. Separating triplet is p2, p3, p7 and deficit(Gs) = 1

(iii) deficit(Gs)>1.

In a structurally well constrained problem G, if
deficit(Gs)>1 then the cut graph Gs contains three
geometric primitives. By Theorem 5, k(G)≤3, which
means Gs contains at most three geometric primitives.
According to Corollary 12, if |V(Gs)|=2, we have either
deficit(Gs)=1 or deficit(Gs)=0. Thus, Gs can only
contain three elements.

In Theorem 8, deficit(G1)+deficit(G2)=deficit(Gs). So
deficit(G1) can be 0,1,…,deficit(Gs), and deficit(G2) will
be deficit(Gs), deficit(Gs)-1,…,0 correspondingly. For a
structurally well-constrained graph in 2D, we know
deficit(Gs)≤3.

Fig.6 is an example of the case that
deficit(G2)=deficit(Gs)=2. Fig. 7 is an example of the
case that deficit(G2)=deficit(Gs)=3. Fig.8 is an example
of the case that deficit(Gs)=2 and
deficit(G1)=deficit(G2)=1. Fig.9 is an example of the
case that deficit(Gs)=3 and deficit(G1)=1,
deficit(G2)=2.

P3

P5

P8

P2

P6

P7

P2
P4

P5

P1

P3

P4

P5

P8

P2

P1

P3

P6

P7

(a) (b) (c)

Fig.6. Separating triplet is p2, p3, p5, deficit(Gs)= 2.

P3

P6

P2
P4

P4

P5

P5
P2

P1

P6

P3

P2

P1

P6

P3

P8

P9

P8

P7

P10

P7

P10

P9

(a) (b) (c)

Fig.7. Separating triplet is p2, p3, p6, deficit(Gs) =3.

P7

P5

P1

P7

P1 P6P4P6P4

P3

P5

P2

P3

P2

P5

P7

P3

(b) (c)(a)

Fig.8. Separating triplet is p3, p5, p7, deficit(Gs)= 2.

473

P6

P8

P7

P2

P4

P6

P1

P9

P3

P1

P4 P5

P7

P3

P6

P5

P2

P1

P8

P7 P9

(a) (b) (c)

Fig.9. Separating triplet is p1, p6, p7, deficit(Gs)=3.

If either G1 or G2 is structurally well-constrained, we

may solve the problem as case (ii) above. For example,
in diagram(c) of Fig. 6, two auxiliary constraints
between p2/p3 and p3/p5 are added; in diagram(c) of Fig.
7, three auxiliary constraints between p2/p3, p2/p6 and
p3/p6 are added.

If neither G1 nor G2 is structurally well-constrained, we
can make the following choices:
(a) Select another separating k-tuple and re-decompose
the constraint graph G. For example, to the problem in
Fig.9, if the triplet is {p1,p5,p9}, deficit(Gs)=1, the
problem can be solved similar to (ii) as shown in Fig.10.

P4

P6

P5

P1

P9

P3

P1

P4 P5

P2
P3

P6

P5

P2

P1

P7 P9

P8
P8

P7 P9

(a) (b) (c)

Fig.10. Separating triplet is p1, p5, p9, deficit(Gs)=1.

(b) Computing the solution to G1 or G2 is feasible in
certain cases. For example, to the constraint problem in
Fig.8, the initial graph is split into two parts, which can
be treated as two four-bar linkages. If we take p3 and p7
as the fixed points, p4 and p2 as the driving points
respectively, the intersection of the coupler loci of the
two four-bar linkages is the solution to p5 [9]. We can
also use LIMd method [8] to solve this problem too.
After removing the distance constraint |p3p4|=d
between points p3 and p4, we can take points p2 and p3
as the fixed points and point p7 as a driving point. Then
we can get the locus of point p7. The intersection of this
locus and the circle whose center is point p3 and radii is
d is the solution of point p7. If there is no geometric
solution, we may use numerical techniques to solve the
problem.

In the cases deficit(Gs)>0, we need to add auxiliary
edges to make the cut graph Gs and the split graph G2
structurally well-constrained. Latham et al presented a
method to detect whether the constraint graph is
structurally under-constrained and decide how to add
constraints if the graph is structurally under-constrained

[24]. Joan-Arinyo et al also proposed an algorithm used
to get a well-constrained problem from an under-
constrained problem [18]. But the type of the constraints
added to Gs should be based on the shape of the split
graph G1 assuming that G1 is a rigid body while G2 is
not.

4. A DCOMPOSTITION ALGORITHM

We will introduce a new decomposition tree, D-tree,
which can be used to simplify a structurally well-
constrained problem.
Definition 13 A D-tree for a structurally well-
constrained k-connected graph G=(V,E,�) is a binary
tree.
(i) The root of the tree is the graph G.
(ii) For each node N in the tree, its left child L is the split
graph of N which is either a triangle or a structurally
well-constrained tri-connected subgraph of N, and the
right child R is the (modified) split graph of N with L
which is either a triangle or a structurally well-
constrained tri-connected graph.
(iii) Every leaf is either a triangle or a tri-connected
structurally well-constrained graph that can not be split
into smaller well-constrained graph further.
Algorithm 1 The input is a structurally well-constrained
graph G=(V,E). The output is a D-tree for G. Let T=G
as the initial value; Sk the set of separating k-tuples in V
(T).
S1 Calculate connectivity k of the structurally well-
constrained connected graph T. If k≥|V(T)|-2, the

algorithm terminates; else Sk←Ø , goto step S2.

S2 (i) If k=2, find all the separating pairs with Hopcroft
and Tarjon method [12]. Then add these separating
pairs to Sk, goto step S3.
(ii) If k=3, find all the separating triplets with
Kanevsky and Ramachandran method [19]. Then add

these separating pairs to Sk, goto step S3.

S3 If Sk≠Ø, taking a separating pair or triplet S in Sk,

Sk ← Sk-{S}, goto S4. Otherwise, the algorithm

terminates.
S4 If the deficit function of the cut graph induced by S is
0, goto S5; else goto S6.
S5 Split T by the separating k-tuple S to generate the
split graphs G1 and G2. If k <|V(G1)| and k <|V (G2)|,
let L=G1 and R=G2; Let T=L, operate the algorithm
from S1 recursively; Let T=R, operate the algorithm
from S1 recursively. Otherwise, goto S3.
S6 Split T by the separating k-tuple S to generate the
split graphs G1 and G2. If one of the split graph is
structurally well-constrained, let it be G1. If
k|<|V(G1)| and k|<|V(G2)|, L=G1. Let T=L and
operate the algorithm from S1 recursively. Let R be the

modified split graph mG2
, T=R, operate the algorithm

474

recursively. Otherwise, goto S3.

The complexity of step S1 is)|||(| 22
1

EVO [1]. When

k=2, Hopcroft and Tarjan gave an algorithm for finding
separating pairs in a bi-connected graph in O(|V|+|E|)
time [12]. When k=3 Kanevsky and Ramachandran
gave an algorithm for finding all separating triplets in a
tri-connected graph in O(|V|2) time[19].

Fig. 11 is a 2D constraint problem, which can be
decomposed into a D-tree. The angular constraints are
ang(l2,l3), ang(l5,l6) and ang(l6,l7). The distance
constraints are dis(p1p2), dis(p2p3), dis(p3p4), dis(p1,p4),
dis(p5,p6), dis(p6,p7) and dis(p7,p8). The incident
constraints are obvious. The problem can be reduced
into solve eleven ruler and compass constructible
triangles and a basic merging pattern solved explicitly in
[10]. Fig.12 is the D-tree of the problem, where dot lines
represent the auxiliary constraints.

l3

l4

l5

l7

l2

l6

l1

P4

P5

P8

P3P7 P6

P1

P2

l5l6

l3

P3

l1
P2

l2

l7

P7

P4

P1

l4

P8 P6

P5

Fig. 11. A geometric constraint problem and its graph

5. MERGE BI-CONNECTED AND TRI-

CONNECTED CONSTRAINT GRAPHS

After a D-tree is obtained for a structurally well-
constrained geometric constraint problem, we can solve
the problem as follows: Do a left to right depth first
transversal of the D-tree and solve the constraint
problem represented by each node as follows.
 (i) If the current node N is a leaf in the tree then it is a
structurally well-constrained problem that cannot be
decomposed further. Solve N with numerical
computation methods [13,22,28].

(ii) Let N be a node with left child L and right child R.
This can be done in three steps.

(a) Solve the left child L. L is a structurally well-
constrained problem that can be solved recursively.

(b) Solve the right child R. The values for the
auxiliary constraints in the right child R can be obtained
from L. Now, R is a structurally well-constrained
problem that can be solved recursively.

(c) Merge L and R to obtain N.
In this section, we will address the problem of merging
two rigid bodies. This problem is generally simple
because we assume that the two rigid bodies share
many geometric primitives. In what below, we will give a

detailed analysis of the merging process for bi-connected
and tri-connected graphs.

5.1. Merge Bi-connected Constraint Graphs
Let the separating pair be {a, b} in a structurally well-
constrained bi-connected graph G. The split graphs of G
are two rigid bodies R1 and R2. Now we show how to
assemble R1 and R2.

The problem can be classified into the following three
cases according to the types of a and b.
(i) The vertices a and b are two points. The relative

position of R1 and R2 can be fixed. Thus R1U R2 is a

rigid body.
(ii) The vertices a and b are a point and a line. The

relative position of R1 and R2 can be fixed. Thus R1U R2

is a rigid body.
(iii) The vertices a and b are two lines. If a and b are
parallel, the relative position of R1 and R2 can not be
fixed because there is a translation degree of freedom

between R1 and R2. Thus R1 U R2 is not a rigid body

although structurally well-constrained. When a and b are
not parallel, the relative position of R1 and R2 can be

fixed. Thus R1U R2 is a rigid body.

We thus proved the following result.
Theorem 14 Let {a, b} be the separating pair in a
structurally well-constrained bi-connected graph G in
2D, R1 and R2 the split subgraphs of G which are two
rigid bodies. Then R is a rigid body if and only if {a, b}
is one of the following three forms: two points; a point
and a line; two lines which are not parallel.

5.2. Merge Tri-connected Constraint Graphs
Let the separating triplet be {a, b,c} in a structurally
well-constrained tri-connected graph G. The split graphs
of G are two rigid bodies R1 and R2. Now we will try to
assemble two rigid bodies R1 and R2, i.e. merge the
vertices a, b and c in R1 and R2.

The problem can be classified into the following four
cases according to the types of vertices a, b and c.
(i) The vertices a, b and c are three points. The relative

position of R1 and R2 can be fixed. Thus R1U R2 is a

rigid body.
(ii) The vertices a, b and c are three lines. If the three
lines are parallel to each other, the relative position of R1
and R2 can not be fixed because there is a translation
degree of freedom. Otherwise, the relative position of R1

and R2 can be fixed and R1U R2 is a rigid body.

(iii) The vertices a, b and c are two points and one line.
The relative position of R1 and R2 can be fixed and

R1U R2 is a rigid body.

(iv) The vertices a, b and c are two lines and a point.
The relative position of R1 and R2 can be fixed and

R1U R2 is a rigid body.

475

P5

P6

l5

P6

l5

P5

P6

P7 P6

l5

P7

P5

P6

P7

l6

l2P4

P3

P5

l6

l5l6

P7

P5

P6

l2

P3

P4

P3

l5l6

P7

P5

l2

P6
l7

P4

P3

l2P4

l5l6
P3

P7

P5

l2

P6

l7

P4

l7

P7

l5l6

P3

P7

P5

l2

P6

l7

P4

P8

P3

l2

l5l6
P3

P7

P5

l2

P6

l7

P4

P8

P2

P2

l5

l3 P2

P2

P4

l5

l3 P2

l6
P3

P7

P5

l2

P6

l7

P4

P8

l1

l5

l3
P2

l6
P3

P7

P5

l2

P6

l1

l7

P4

P8

P1

l6

P3

P7

P1

P5

l2

P6

P4

l1

l7

P4

l5

L6

l6

l6

l6

l7

l7

l7

l3l3

P3

l3

l3

P8

l3
P2

l3
P1

P1

P1

P1

l4

P8

l4

Fig.12 The D-tree of the geometric constraint problem in Fig. 11.

476

6. REFERENCES
[1] Becker, E., Brostein, M., Cohen, H., Eisenbud, D.

and Gilman, R., Algorithms and Computation in
Mathematics, Volume 5, 331-351.

[2] Brüderlin, B., Using Geometric Rewriting Rules for
Solving Geometric Problems Symbolically,
Theoretical Comp. Science, 116, 291-303, 1993.

[3] Chen, L.P., Wang, X.B., Chen, X.B. and Zhou, J.,
An Optimal Method of Bipartite Graph Matching for
Underconstrained Geometry Solving, Chinese J.
Computers, 23(5), 523-530, 2000.

[4] Durand C., and Hoffmann,C. M., A Systematic
Framework for Solving Geometric Constraints
Analytically, J. of Symbolic Computation, 30(5),
493-529, 2000.

[5] Fudos, I. and Hoffmann, C.M., A Graph-constructive
Approach to Solving Systems of Geometric
Constraints, ACM Transactions on Graphics, 16(2),
179-216, 1997.

[6] Gao, X.S. and Chou, S.C. Solving Geometric
Constraint Systems I. A Global Propagation
Approach, Comp.-Aided Des., 30(1), 47-54, 1998.

[7] Gao, X.S. and Chou, S.C., Solving Geometric
Constraint Systems II. A Symbolic Approach and
Decision of Rc-constructibility, Computer-Aided
Design, 30(2), 115-122, 1998.

[8] Gao, X.S., Hoffmann, C.M. and Yang, W.Q.,
Solving Basic Geometric Constraint Configurations
with Locus Intersection, Proc. ACM SM02, 95-104,
ACM Press, New York, 2002.

[9] Gao, X.S, Jiang, K. and Zhu, C.C., Geometric
Constraint Solving with Conics and Linkages,
Computer Aided Design, Vol 34, 421-433, 2002.

[10] Gao, X.S. and Zhang, G.F., Classification and
Solving of Merge Patterns in Geometric Constraint
Solving, Proc. Shape Modeling and Applications,
89-90, IEEE press, 2003.

[11] Gao, X.S. and Zhang, G.F., Geometric Constraint
Solving via C-tree Decomposition, Proc. ACM
SM03, 45-55, ACM Press, New York, 2003.

 [12] Hopcroft, J.E. and Tarjan, R.E. Dividing a Graph
into Triconnected Components, SIAM J.
Computing. 135-158, 1973.

[13] Ge, J.X., Chou, S.C. and Gao, X.S. Geometric
Constraint Satisfaction Using Optimization
Methods, Computer Aided Design, 31(14), 867-
879, 2000.

[14] Hoffmann, C.M. and Vermeer, P.J., Geometric
Constraint Solving in R2 and R3, in Computing in
Euclidean Geometry, D. Z. Du and F. Huang (eds),
World Scientific, Singapore, 266-298, 1995.

[15] Hoffmann, C.M., Lomonosov, A. and Sitharam, M.,
Finding Solvable Subsets of Constraint Graphs,
LNCS 1330 :163-197, 1997.

[16] Jermann, C., Neveu, B. and Trombettoni, G., A

New Structural Rigidity for Geometric Constraint
Systems, Winkler. F(Ed.) ADG2002, LNAI 2930:
87-105, 2004.

[17] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S. and
Vilaplan-Pastö, J., Revisiting Decomposition
Analysis of Geometric Constraint Graphs, Proc.
ACM SM02, 105-115, ACM Press, NY, 2002.

[18] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S. and
Vilaplana-Pastö, J., Transforming an Under-
constrained Geometric Constraint Problem into a
Well-constrained One, Proc. ACM SM03, 33-44,
ACM Press, New York, 2003.

[19] Kanevsky, A. and Ramachandran, V., Improved
Algorothms for Graph Four-connectivity, Proc.
28th Ann. IEEE Symp. Foundations of Computer
Science, Los Angeles, 252-259, 1987.

[20] Kondo, K., Algebraic Method for Manipulation of
Dimensional Relationships in Geometric Models,
Computer Aided Design, 24(3), 141-147, 1992.

[21] Kramer, G.A., Solving Geometric Constraints
Systems: A Case Study in Kinematics, MIT Press,
Cambridge Massachusetts, 1992.

[22] Lamure, H. and Michelucci, D., Solving Geometric
Constraints By Homotopy, IEEE Trans on
Visualization and Computer Graphics,2(1):28-
34,1996.

[23] Lamure, H. and Michelucci, D., Qualitative Study
of Geometric Constraints, in Geometric Constraint
Solving and Applications, 234-258, Springer,
Berlin, 1998.

[24] Latham, R.S. and Middleditch, A.E., Connectivity
Analysis: a Tool for Processing Geometric
Constraints, Computer Aided Design, 28(11), 917-
928, 1994.

[25] Lee, J. Y. and Kim, K., Geometric Reasoning for
Knowledge Based Design Using Graph
Representation, Computer-Aided Design, 28(10),
831-841, 1996.

[26] Van Leeuwen, J., Handbook of Theoretical
Computer Science(Volume A): Algorithms and
Complexity, Elsevier Science Publishers B.V. 1990.

[27] Li, Y.T., Hu, S.M. and Sun, J.G., Hybrid Model of
Geometric Constraint Satisfaction, Journal of
Computer Research and Development, 37(10),
1233-1239, 2000.

[28] Lin, V.C., Gossard, D.C. and Light, R.A.,
Variational Geometry in Computer-Aided Design,
Computer Graphics, 15(3), 171-177, 1981.

[29] Owen J., Algebraic Solution for Geometry from
Dimensional Constraints, in ACM Symp., Found of
Solid Modeling, ACM Press, NY, 397-407, 1991.

[30] Verroust, A., Schonek, F. and Roller, D., Rule-
Oriented Method for Parameterized Computer-
Aided Design, Comp.-Aided Des., 24(10),531-540,
1992.

