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ABSTRACT 

 
We propose a geometric constraint solving method based on connectivity analysis in graph theory, 
which can be used to decompose a structurally well-constrained problem in 2D into some smaller 
ones if possible. We also show how to merge two rigid bodies if they share two or three geometric 
primitives in a bi-connected or tri-connected graph respectively. 
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1. INTRODUCTION 

Geometric constraint solving (GCS) is one of the key 
techniques in parametric CAD, which allows the user to 
make modifications to existing designs by changing 
parametric values. There are four major approaches to 
geometric constraint solving: the numerical approach 
[13,22,28], the symbolic computation approach [7,20], 
the rule-based approach [2,6,21,30] and the graph-
based approach [3,4,15,17,24,25,27]. 

This paper will focus on using graph algorithms to 
decompose a large constraint problem into smaller 
ones. In [29], Owen proposed a GCS method based on 
the tri-connected decomposition of graphs, which may 
be used to reduce a class of constraint problems into 
constraint problems consisting of three geometric 
primitives. In [5,14], Hoffmann et al proposed a 
method based on cluster formation to solve 2D and 3D 
constraint problems. In [17], Joan-Arinyo et al 
proposed an algorithm to decompose a 2D constraint 
problem into an s-tree. This method is equivalent to 
Owen's and Hoffmann's methods, but is conceptually 
simpler. 

The above approaches use triangles as basic patterns 
to solve geometric constraint problems. In [24], Latham 
and Middleditch proposed an algorithm used to 
decompose a constraint problem into what we called 
general construction sequence [10,11]. A similar method 
based on maximal matching of bipartite graphs was 
proposed in [23]. In [15], Hoffmann et al gave an 
algorithm to find rigid bodies in a constraint problem. 
From this, several general approaches to GCS are 
proposed. In [16], Jermann et al also gave a general 

approach to GCS based on the method in [15]. In [11], 
a c-tree decomposition method is proposed to solve 
both 2D and 3D constraint problems. The method 
proposed in [15] and the c-tree method [11] can be 
used to find a decomposition with the smallest 
controlling problem in certain sense. 

In this paper, a method based on connectivity analysis 
from graph theory is proposed to decompose a 
constraint graph into a decomposition tree (abbr.   D-
tree). This method is a natural generalization of the 
methods in [17,29] which are based on tri-connectivity 
analysis of the constrained graph, and can solve 
problems that can be reduced to triangles. On the other 
hand, our method can be used to deal with general 
problems. In Section 2, we introduce the concept of 
connected graph. In Section 3, the method to split 
constraint graph is proposed. In Section 4, an algorithm 
to generate the D-tree is proposed. In Section 5, a 
method of merging bi-connected and tri-connected 
constraint graphs is proposed, followed by some 
conclusions. 

 
2. PRELIMINARIES ON CONSTRAINT GRAPHS 

The geometric primitives considered in this paper are 
points and lines in 2D. The geometric constraints 
considered in this paper include distance constraints 
between point/point, point/line and angular constraints 
between line/line in 2D. 

We use a constraint graph to represent a constraint 
problem. The vertices of the graph represent the 
geometric primitives and the edges represent the 
constraints. 
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Let G=(V,E,�) (or G=(V(G),E(G),�) be a geometric 
constraint graph. For any v in V, �(v) is the weight of 
vertex v, i.e the number of independent parameters 
used to determine the vertex, and �(V)=Σv∈V �(v). For 

instance, the weight of every geometric primitive we 
consider here in 2D is 2. For any e in E, �(e) presents 
the weight of edge e, i.e the number of scalar equations 
to represent the constraint, and             �(E)=Σe∈E 
�(e). For instance, in 2D the weight of the distance 
constraint between two points is 1 if the distance is not 
zero, otherwise it is 2. 
Definition 1 Let G=(V,E,�) be a geometric constraint 
graph. 
(i) G is structurally over-constrained if there is an 

induced subgraph H of G satisfying        
�(E(H))>�(V(H))-3. 

(ii)G is structurally under-constrained if it is not 
structurally over-constrained and 0<�(E)<�(V)-3. 

(iii)G is structurally well-constrained if it is neither 
structurally under-constrained nor structurally over-
constrained. 

A rigid body is a set of geometric primitives whose 
position and orientation relative to each other is known 
[5]. A structurally well-constrained graph defines a rigid 
body in most cases. But in some special cases the 
constraint problem represented by a structurally well-
constrained graph may have no solutions or an infinite 
number of solutions. It is obvious that a structurally well-
constrained graph is always connected. 
Definition 2 An undirected graph G=(V,E) is called 
connected if for every two nodes x, y∈V, there exists a 
path of edges from E joining x and y. A graph is called 
disconnected if it is not connected. A graph is called k-
connected (k≥2) if there does not exist a set of k-1 or 
fewer nodes V�⊂ V such that the removal of all nodes of 
V′ and their incident edges from G results in a 
disconnected graph. 
Definition 3 Two vertices x and y of graph G are said 
to be k-connected if k is the largest integer such that 
there exist k vertex-disjoint paths from x to y in G. The 

connectivity of x and y is denoted by κ(x, y), which is 
the maximal number of vertex disjoint paths from x to y 
in G. 
Theorem 4 (Theorem of Whitney) A graph G=(V,E) 
is k-connected if and only if κ (x, y)≥k for any two 
vertices x and y of G, that is,  

κ (G)=min {κ (x, y): x, y∈V}. 
Definition 2, Definition 3 and Theorem 4 are 

available in [1]. The complexity of the algorithm to 
calculate the connectivity of a connected graph      

G=(V, E) is )|||(| 22
1

EVO  [1]. 

Theorem 5 Let G be a structurally well-constrained 

graph. We have   κ(G)≤ 3  in 2D. 
Proof: For a graph G=(V,E), it is known that  

κ(G)≤
||

||2

V

E
 from [26]. Then for a structurally well-

constrained constraint graph G, we can obtain the 
bound of κ (G) explicitly. Because the constraint 

problem is in 2D, |E|=2|V|-3 and 
2(2| | 3)2| |

| | | |

VE

V V

−

= <4.      

Thus κ (G) ≤3.  
Let G=(V,E) be a connected undirected graph. A 

vertex v∈V is a separating vertex for G, if the subgraph 
induced by V-{v} is not connected. G is bi-connected if 
it contains no separating vertex.   

A pair of vertices v1, v2∈V is a separating pair for G if 
the subgraph induced by V-{v1,v2} is not connected. G 
is tri-connected if it contains no separating vertices and 
pairs [12].  

A triplet {v1,v2,v3} of distinct vertices in V is a 
separating triplet of a tri-connected graph if the 
subgraph induced by V-{v1,v2,v3} is not connected. G is 
4-connected if it contains no separating vertices, pairs 
and triplets [19]. 

A tuple {v1,v2,…,vk} of distinct vertices in V is a 
separating k-tuple of a k-connected graph if the 
subgraph induced by V-{v1,v2,…,vk} is not connected. G 
is (k+1)-connected if it contains no separating          i-

tuple   {v1,v2, …,vi} (i≤k). 
 
3.DECOMPOEITION OF K-CONNECTED GRAPH 

In this section, let G=(V,E,�) be a geometric constraint 
graph. Assuming that G is k-connected and 
Vs={v1,v2,…,vk} is a separating k-tuple of G. The 
subgraph of G induced by Vs is Gs=(Vs, Es, �) and Gs  is 
called a cut graph. A k-connected graph can be split into 
separating components C1,C2,…,Cn by splitting it at the 

separating  k-tuple Vs. Assuming that 1≤m≤n and let 

C1=
m

i 1=U Ci ,  C2=
n

mi 1+=
U Ci,               

such that |V(C1)| ≥1 and |V(C2)| ≥1. Thus we refer to 

the graphs  

G
1
=(V(C1)∪Vs, E(C1)∪{(v1,v2)|v1∈V(C1),v2∈Vs}) 

G
2
=(V(C2)∪Vs, E(C2)∪{(v1,v2)|v1∈V(C2),v2∈Vs}) 

as the separating graphs of G. The graphs 

G1=(V(G
1
),E(G

1
)∪Es)) and G2=(V(G

2
),E(G

2
)∪Es)) 

are called split graphs of G. The relation of split graphs 
and the cut graph is shown in Fig.1 

G2G1

C2C1

Gs

 
Fig. 1. The relation of split graphs and the cut graph 
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Joan-Arinyo et al defined a deficit function 
deficit=2|V|-|E|-3 to compute the difference between the 
number of weight of edges for a constraint graph 
G=(V,E) to be structurally well-constrained and its 
actual number of weight |E| in 2D [17]. Here we 
generalize the deficit function to more general cases. 
Definition 6 Let G=(V,E,�) be a geometric constraint   
graph. We can define the deficit function associated with 
G as deficit(G)=�(V)-�(E)-3.  

If G is a structurally well-constrained problem, 
deficit(G)=0. If G is not structurally over-constrained, 
deficit(G) ≥0. 

In 2D, if G is a structurally well-constrained graph and 
the primitives are points and lines, for every edge 
e=(u,v) in E(G), �(e)=1.  
Theorem 7 Let G=(V,E,�) be a geometric constraint 
graph in 2D. If G is structurally well-constrained, there is 
no separating vertex in G. 
Proof: Assuming that there is a separating vertex v, such 
that we can split graph G into two split graphs G1 and G2 
by the vertex. 
Because G is structurally well-constrained, deficit(G)=0,  
deficit(G1) ≥0 and deficit(G2) ≥0. 
Because         �(V(G))= �(V(G1))+ �(V(G2))- �(v)  
and               �(E(G))= �(E(G1))+ �(E(G2)), 
we have   
�(V(G1))+ �(V(G2))- �(v)-( �(E(G1))+ �(E(G2)))-3=0, 
i.e.  deficit(G1)+ deficit(G2)+(3-�(v))=0.  
Because deficit(G1) ≥0 and deficit(G2) ≥0,  it’s obvious 
that  3-�(v)≤0. But for every primitive v we consider 
here �(v)=2, so 3-�(v)>0 and there is no separating 
vertex in a structurally well-constrained graph. 
Theorem 8 Let Gs=(Vs,Es,�) be the cut graph induced 
by a separating k-tuple (k≥2) of a                    k-
connected structurally well-constrained graph 
G=(V,E,�) and the split graphs G1=(V(G1),E(G1),�) and 
G2=(V(G2),E(G2),�). We have  

deficit(G1)+ deficit(G2)= deficit(Gs). 
Proof: Since graph G is structurally well-constrained, 
deficit(G1) ≥0,  deficit(G2) ≥0  and deficit(Gs) ≥0.   
So     �(Vs)-�(Es)-3≥0, �(V(G1))-�(E(G1))- 3≥0  
and        �(V(G2))-�(E(G2))- 3≥0.  
Because    �(E(G1))+�(E(G2))-�(Es)=�(V)- 3,        
and           �(V) -3=�(V(G1))+�(V(G2)) -�(Vs).                 
Thus (�(V(G1)) -�(E(G1))- 3 )+�(V(G2)) -�(E(G2))- 3                                                                                                      

=�(Vs)-�(Es)- 3.  
So deficit(G1)+ deficit(G2)= deficit(Gs). 
Corollary 9 Let G=(V,E,�) be a structurally well-
constrained k-connected graph, Gs=(Vs,Es,�) the cut 
graph of G induced by a separating k-tuple Vs={v1,v2, 
…,vk}, G1 and G2 the split graphs of graph G. G1 and G2 
are structurally well-constrained if and only if Gs is 
structurally well-constrained. 
Proof: Because G1 and G2 are not over-constrained, 

deficit(G1) ≥0 and deficit(G2) ≥0. Then deficit(Gs)=0 if 
and only if deficit(G1)=0 and deficit(G2)=0,  according 
to Theorem 8. 
Corollary 10 Let G=(V,E,�) be a structurally well-
constrained k-connected graph, Gs=(Vs,Es,�) the cut 
graph of G induced by a separating k-tuple Vs={v1,v2, 
…,vk}, G1 and G2 the split graphs of graph G.  If 
deficit(Gs)=1, only one of the split graph is structurally 
well-constrained. 
Proof: Because G1 and G2 are not over-constrained, 
deficit(G1) ≥0 and deficit(G2) ≥0. deficit(Gs)=1 if and 
only if deficit(G1)=1 and deficit(G2)=0, or deficit(G1)=0 
and deficit(G2)=1  according to Theorem 8. 
Corollary 11 Let Gs be the graph induced by a 
separating k-tuple of a k-connected structurally well-
constrained graph G, G1 and G2 the split graphs. If Gs is 
not structurally well-constrained and G1 is structurally 
well-constrained, then 

deficit(Gs)= deficit(G2). 
Proof: This is a direct consequence of  Theorem 8. 
Corollary 12 For a structurally well-constrained bi-
connected constraint graph, at least one of the split 
graphs is a structurally well-constrained graph in 2D. 
Proof: Let {a,b} be the separating pair of a structurally 
well-constraint graph G=(V,E,�), thus deficit(Gs) is 0 or 
1. Then the conclusion is obvious according to the 
proofs of corollary 9 and corollary 10. 

This conclusion is the same as that in [17,29], based 
on which Owen gave an efficient algorithm and Joan-
Arinyo et al gave an improved algorithm in 2D.  

The examples shown in Fig.2 and Fig. 3 are the case 
of  deficit(Gs) = 0 and deficit(Gs) =1 respectively.  

In the following figures, diagrams (a), (b) and (c) 
represent original constraint graph, the split graphs G1 
and G2 respectively.  

P3

P4

P2

P3

P1

P2

P1

P2

P3

P4

(c)(b)(a)

 
Fig. 2. Separating pair is p2, p3,  and deficit(Gs) = 0. 
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P3
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P1

P2

P3

P5
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Fig. 3. Separating pair is p2, p3, and deficit(Gs) =1. 
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In general, a structurally well-constrained graph can 

be decomposed by three ways based on connectivity 
analysis. 

(i) deficit(Gs)=0. 
Now the split graphs G1 and G2 are structurally well-

constrained according to Corollary 9. We can solve 
them separately, and merge them to obtain the solutions 
to the initial problem. Here the merging step is easy for 
G1 and G2 who share the same cut graph Gs.  Fig. 4 is 
an example of this case. The graph is split into two 
structurally well-constrained graphs, which are solved 
explicitly in [10]. 
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P9

P7

P8

P4

P6

P5

P1

P3

P2

P4

P6

P5

P1

P3

P2

P9

P7

P8

P4

P6

(a) (b) (c)

 
Fig.4. Separating triplet is p4,  p5,  p6 and deficit(Gs)=0 

 
(ii) deficit(Gs)=1. 
Now one of the split graphs is structurally well-

constrained according to Corollary 10. Let G1 be the 
well-constrained split graph. We solve G1 first, and add 
one auxiliary constraint to Gs so that Gs become a 
structurally well-constrained problem denoted by Gs�. 
Since Gs is part of G2 and deficit(Gs)=deficit(G2) by 
Corollary 10, when replacing Gs with Gs� and adding 
these auxiliary constraints to G2, G2 becomes a 
structurally well-constrained problem denoted by G2�, 
and can be solved separately. After getting the solution 
of G1 and G2�, we can merge them to obtain the 
solution to the initial problem. G2� is called the modified 
split graph of G with G1. Fig. 5 is an example of this 
case. In diagram(c), an auxiliary constraint between p2 
and p3 is added. This problem is split into two ruler and 
compass constructible triangles and a basic merging 
pattern solved analytically in [10]. 
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P4
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P5

P3

P7
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P7

P1

P3 P2
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 Fig.5. Separating triplet is p2, p3, p7 and deficit(Gs) = 1 

 
(iii) deficit(Gs)>1. 

In a structurally well constrained problem G, if 
deficit(Gs)>1 then the cut graph Gs contains three 
geometric primitives. By Theorem 5, k(G)≤3, which 
means Gs  contains at most three geometric primitives. 
According to Corollary 12, if |V(Gs)|=2, we have either 
deficit(Gs)=1 or deficit(Gs)=0. Thus, Gs can only 
contain three elements.   

In Theorem 8, deficit(G1)+deficit(G2)=deficit(Gs).  So 
deficit(G1) can be 0,1,…,deficit(Gs), and deficit(G2) will 
be deficit(Gs), deficit(Gs)-1,…,0 correspondingly.    For a 
structurally well-constrained graph in 2D, we know 
deficit(Gs)≤3.  

Fig.6 is an example of the case that 
deficit(G2)=deficit(Gs)=2. Fig. 7 is an example of the 
case that deficit(G2)=deficit(Gs)=3. Fig.8 is an example 
of the case that deficit(Gs)=2 and 
deficit(G1)=deficit(G2)=1. Fig.9 is an example of the 
case that  deficit(Gs)=3 and deficit(G1)=1, 
deficit(G2)=2. 
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Fig.6. Separating triplet is p2, p3, p5, deficit(Gs)= 2. 
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Fig.7. Separating triplet is p2, p3, p6, deficit(Gs) =3. 
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Fig.8. Separating triplet is p3, p5, p7, deficit(Gs)= 2. 
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Fig.9. Separating triplet is p1, p6, p7, deficit(Gs)=3. 

 
If either G1 or G2 is structurally well-constrained, we 

may solve the problem as case (ii) above. For example, 
in diagram(c) of Fig. 6, two auxiliary constraints 
between p2/p3 and p3/p5 are added; in diagram(c) of Fig. 
7, three auxiliary constraints between p2/p3, p2/p6 and 
p3/p6 are added. 

If neither G1 nor G2 is structurally well-constrained, we 
can make the following choices: 
(a) Select another separating k-tuple and re-decompose 
the constraint graph G.  For example, to the problem in 
Fig.9, if the triplet is {p1,p5,p9}, deficit(Gs)=1, the 
problem can be solved similar to (ii) as  shown in Fig.10. 
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Fig.10. Separating triplet is p1, p5, p9, deficit(Gs)=1. 

 
(b) Computing the solution to G1 or G2 is feasible in 
certain cases. For example, to the constraint problem in 
Fig.8, the initial graph is split into two parts, which can 
be treated as two four-bar linkages. If we take p3 and p7 
as the fixed points, p4 and p2 as the driving points 
respectively, the intersection of the coupler loci of the 
two four-bar linkages is the solution to p5 [9]. We can 
also use LIMd method [8] to solve this problem too. 
After removing the distance constraint |p3p4|=d 
between points p3 and p4, we can take points p2 and p3 
as the fixed points and point p7 as a driving point. Then 
we can get the locus of point p7. The intersection of this 
locus and the circle whose center is point p3 and radii is 
d is the solution of point p7. If there is no geometric 
solution, we may use numerical techniques to solve the 
problem.  

In the cases deficit(Gs)>0, we need to add auxiliary 
edges to make the cut graph Gs and the split graph G2 
structurally well-constrained. Latham et al presented a 
method to detect whether the constraint graph is 
structurally under-constrained and decide how to add 
constraints if the graph is structurally under-constrained 

[24]. Joan-Arinyo et al also proposed an algorithm used 
to get a well-constrained problem from an under-
constrained problem [18]. But the type of the constraints 
added to Gs should be based on the shape of the split 
graph G1 assuming that G1 is a rigid body while G2 is 
not. 
 
4. A DCOMPOSTITION ALGORITHM 

We will introduce a new decomposition tree, D-tree, 
which can be used to simplify a structurally well-
constrained problem. 
Definition 13 A D-tree for a structurally well-
constrained k-connected graph G=(V,E,�)  is a binary 
tree. 
(i) The root of the tree is the graph G.  
(ii) For each node N in the tree, its left child L is the split 
graph of N which is either a triangle or a structurally 
well-constrained tri-connected subgraph of N, and the 
right child R is the (modified) split graph of N with L 
which is either a triangle or a structurally well-
constrained tri-connected graph. 
(iii) Every leaf is either a triangle or a tri-connected 
structurally well-constrained graph that can not be split 
into smaller well-constrained graph further. 
Algorithm 1 The input is a structurally well-constrained 
graph G=(V,E). The output is a D-tree for G. Let T=G 
as the initial value; Sk the set of separating k-tuples in V 
(T). 
S1 Calculate connectivity k of the structurally well-
constrained connected graph T. If k≥|V(T)|-2, the 

algorithm terminates; else Sk←Ø , goto step S2.  

S2 (i) If k=2, find all the separating pairs with Hopcroft 
and Tarjon method [12]. Then add these separating 
pairs to Sk, goto step S3. 
(ii) If k=3, find all the separating triplets with 
Kanevsky and Ramachandran method [19]. Then add 

these separating pairs to Sk, goto step S3. 

S3 If Sk≠Ø, taking a separating pair or triplet S in Sk,         

Sk ← Sk-{S}, goto S4. Otherwise, the algorithm 

terminates. 
S4 If the deficit function of the cut graph induced by S is 
0, goto S5; else goto S6. 
S5 Split T by the separating k-tuple S to generate the 
split graphs G1 and G2. If k <|V(G1)| and k <|V (G2)|,  
let L=G1 and R=G2; Let T=L, operate the algorithm 
from S1 recursively; Let T=R, operate the algorithm 
from S1 recursively. Otherwise,  goto S3. 
S6 Split T by the separating k-tuple S to generate the 
split graphs G1 and G2. If one of the split graph is 
structurally well-constrained, let it be G1. If                        
k|<|V(G1)| and k|<|V(G2)|, L=G1. Let T=L and 
operate the algorithm from S1 recursively. Let R be the 

modified split graph mG2
, T=R, operate the algorithm 
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recursively. Otherwise,  goto S3.  

The complexity of step S1 is )|||(| 22
1

EVO  [1]. When 

k=2, Hopcroft and Tarjan gave an algorithm for finding 
separating pairs in a bi-connected graph in O(|V|+|E|) 
time [12]. When k=3 Kanevsky and Ramachandran 
gave an algorithm for finding all separating triplets in a 
tri-connected graph in O(|V|2) time[19].   

Fig. 11 is a 2D constraint problem, which can be 
decomposed into a D-tree. The angular constraints are 
ang(l2,l3), ang(l5,l6) and ang(l6,l7). The distance 
constraints are dis(p1p2), dis(p2p3), dis(p3p4), dis(p1,p4), 
dis(p5,p6), dis(p6,p7) and dis(p7,p8). The incident 
constraints are obvious. The problem can be reduced 
into solve eleven ruler and compass constructible 
triangles and a basic merging pattern solved explicitly in 
[10]. Fig.12 is the D-tree of the problem, where dot lines 
represent the auxiliary constraints. 
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Fig. 11. A geometric constraint problem and its graph 

 

5. MERGE BI-CONNECTED AND TRI-

CONNECTED CONSTRAINT GRAPHS 

After a D-tree is obtained for a structurally well-
constrained geometric constraint problem, we can solve 
the problem as follows: Do a left to right depth first 
transversal of the D-tree and solve the constraint 
problem represented by each node as follows. 
 (i) If the current node N is a leaf in the tree then it is a 
structurally well-constrained problem that cannot be 
decomposed further. Solve N with numerical 
computation methods [13,22,28].  

(ii) Let N be a node with left child L and right child R. 
This can be done in three steps. 

(a) Solve the left child L. L is a structurally well-
constrained problem that can be solved recursively. 

(b) Solve the right child R. The values for the 
auxiliary constraints in the right child R can be obtained 
from L. Now, R is a structurally well-constrained 
problem that can be solved recursively. 

(c) Merge L and R to obtain N. 
In this section, we will address the problem of merging 
two rigid bodies. This problem is generally simple 
because we assume that the two rigid bodies share 
many geometric primitives. In what below, we will give a 

detailed analysis of the merging process for bi-connected 
and tri-connected graphs.  
 
5.1. Merge Bi-connected Constraint Graphs 
Let the separating pair be {a, b} in a structurally well-
constrained bi-connected graph G. The split graphs of G 
are two rigid bodies R1 and R2. Now we show how to 
assemble R1 and R2. 

The problem can be classified into the following three 
cases according to the types of a and b. 
(i) The vertices a and b are two points. The relative 

position of R1 and R2 can be fixed. Thus R1U R2 is a 

rigid body. 
(ii) The vertices a and b are a point and a line. The 

relative position of R1 and R2 can be fixed. Thus R1U R2 

is a rigid body. 
(iii) The vertices a and b are two lines. If a and b are 
parallel, the relative position of R1 and R2 can not be 
fixed because there is a translation degree of freedom 

between R1 and R2. Thus R1 U R2 is not a rigid body 

although structurally well-constrained. When a and b are 
not parallel, the relative position of R1 and R2 can be 

fixed. Thus R1U R2 is a rigid body. 

We thus proved the following result. 
Theorem 14 Let {a, b} be the separating pair in a 
structurally well-constrained bi-connected graph G in 
2D, R1 and R2 the split subgraphs of G which are two 
rigid bodies. Then R is a rigid body if and only if {a, b} 
is one of the following three forms: two points; a point 
and a line; two lines which are not parallel. 
 
5.2. Merge Tri-connected Constraint Graphs 
Let the separating triplet be {a, b,c} in a structurally 
well-constrained tri-connected graph G. The split graphs 
of G are two rigid bodies R1 and R2. Now we will try to 
assemble two rigid bodies R1 and R2, i.e. merge the 
vertices a, b and c in R1 and R2. 

The problem can be classified into the following four 
cases according to the types of vertices a, b and c. 
(i) The vertices a, b and c are three points. The relative 

position of R1 and R2 can be fixed. Thus R1U R2 is a 

rigid body. 
(ii) The vertices a, b and c are three lines. If the three 
lines are parallel to each other, the relative position of R1 
and R2 can not be fixed because there is a translation 
degree of freedom. Otherwise, the relative position of R1 

and R2 can be fixed and R1U R2 is a rigid body. 

(iii) The vertices a, b and c are two points and one line. 
The relative position of R1 and R2 can be fixed and 

R1U R2 is a rigid body. 

(iv) The vertices a, b and c are two lines and a point. 
The relative position of R1 and R2 can be fixed and 

R1U R2 is a rigid body. 
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Fig.12 The D-tree of the geometric constraint problem in Fig. 11. 
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