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ABSTRACT 

 

There are practical applications in the sheet metal, packaging and various other industries for 

research into the automatic development of the flat layout or pattern that can be folded into some 

desired 3D folded structure. The relevant techniques developed in earlier work are based on 

generating spanning trees of the face adjacency graph (the graph that represents the connectivity 

among the faces of the folded structure) since any spanning tree is a potential unfolded flat layout 

of that structure. However, complications in the structure, such as situations where more than two 

faces are joined at one common edge, pose problems to the spanning tree unfolding methodology 

that can lead to incorrect results. This work examines these problems through the connectivity and 

topological representation issues involved when splitting these common edges, and proposes a 

strategy to handle such complications by developing algorithms to detect topologically invalid 

spanning trees. These new algorithms are incorporated into a previous procedure developed by the 

authors, and the overall methodology is implemented on a computer program and applied to 

unfold four example structures to generate their corresponding flat layouts. 
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1. INTRODUCTION 

There are practical applications in industry for the study 

of how to design a flat layout/pattern of sheet material 

that can be folded into some desired 3D geometric 

structure. For example, sheet metal products are often 

produced by bending (folding) a flat pattern of sheet 

metal, with perhaps some welding (joining) of its edges. 

Another application is in the field of packaging, where 

corrugated paperboard is folded into a 3D folded 

structure of some desired geometry. Usually having 

more complex geometries than the ubiquitous carton 

boxes, these structures are actually used inside carton 

boxes as packaging cushions (also known as packaging 

buffers) for protective packaging of products, or used as 

partitions (also known as inserts) for holding/segregating 

multiple products or components within a package. With 

manufacturers coming under the impact of stronger 

environmental legislation, these protective packaging 

components made of paper are increasingly being 

considered as viable alternatives to the traditional use of 

packaging cushions made of polymer foams. 

 

The design of a flat layout (of paperboard) that can be 

folded into some desired 3D folded structure is a 

challenging problem that requires creativity/ingenuity, 

experience and laborious trial-and-error on the part of 

the designer. As paperboards are manufactured as flat 

sheets, a 3D board structure (with some complex 

topology/shape to hold the product that is being 

packaged) has to be produced by folding from a suitable 

flat paperboard pattern/layout. Different products with 

varying geometry and complexity will require much 

innovation from the designer to create the various 3D 

folded packaging structures and their corresponding flat 

layouts. Hence the objective of this research is to aid the 

designer by developing a methodology to generate 

solutions to the following question : Given a 3D folded 

structure, what are the flat layouts that can be folded 

into that structure? As these 3D structures are composed 

of piecewise planar faces and are formed by folding 

some flat sheet of material, their topological 

configurations are of the main concern and therefore 

their geometries can be treated in a schematic form with 

the faces having zero thickness and ignoring any 

bending radius at the folded edges. As a result, these 

folded structures are usually non-manifold objects. 

 

Research work related to the folding of sheet or thin-

walled materials include some of the mathematical 
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studies of origami [3][7] and even computational 

algorithms developed for generating the crease pattern 

for folding into various origami designs [10]. However, 

in origami, the sheets of paper are usually folded into 

objects which are flat or piecewise flat structures. 

Another related work is the geometric modelling and 

simulation of pop-up books [11]. However, the 

mathematical formulations in such work focus mainly on 

shape and motion information of the pop-up 

mechanisms and not on the topology. Foldable 

structures have also been treated and analyzed as 

mechanisms by Dai and his co-workers [5][15] and 

Pellegrino and his co-workers [6][8][20]. Another 

interesting work is that of Kling et al. [9] where 

geometric theories have been developed for generating 

doubly-periodic folding patterns within one sheet. The 

resulting structures may be considered as sheets with 

discrete raised patterns which give the sheet desirable 

properties suited for a variety of purposes and yet is 

economical to produce since the manufacturing process 

is essentially folding only. 

 

Agarwal et al. [1] proposed a star unfolding technique 

for unfolding convex polyhedrons by selecting some 

point on the face of the polyhedron and cutting from 

that point to various vertices of the structure via the 

shortest paths. Biedl et al. [4] also proposed algorithms 

to unfold two classes of orthogonal polyhedra by cutting 

across faces. However, cutting/breaking a face into two 

or more faces compromises the strength and integrity of 

the structure and so from a mechanical point of view, 

cutting along common edges to unfold a structure (also 

known as edge unfolding) is the preferred outcome. 

Bangay [2] proposed heuristic algorithms to iteratively 

construct the flat layout by successively adding faces to 

the layout. However, the procedures were demonstrated 

only on the type of 3D polyhedral models typically used 

for surface representation of objects in virtual reality 

environments. 

 

As sheet metal forming is an important manufacturing 

process, much work has also been done on the 

geometric reasoning of sheet metal (thin-walled) objects 

to aid in their design when they are of fairly complex 

geometries. Lin and Yang [12][13] and Lipson and 

Shpitalni [14] developed mathematical formulations to 

analyze/relate the topological properties of these 3D 

thin-walled objects and their corresponding flat patterns. 

Using formulae to compute the number of seams (i.e. 

the common edges of a 3D thin-walled object that need 

to be split in order to unfold the object into a flat layout), 

Lin and Yang [12][13] then applied a breath-first search 

process to assign the required number of seams (splits) 

to the face adjacency matrix of the object to generate 

the development matrices (each of which is the face 

adjacency matrix of a potential flat layout). These 

development matrices are then checked for validity (i.e. 

the flat layout is a single connected piece, and there are 

no overlapping faces). In principle, any spanning tree of 

the face adjacency graph (that represents the topology 

of the folded object) is a potential flat layout of the 

object. Based on this principle, Shpitalni and Lipson 

[19] proposed an approach that applies the A* 

algorithm to find a maximum weighted spanning tree 

that represents a valid (with non-overlapping faces) and 

optimal (according to some prescribed optimality 

criteria) flat layout. Liu and Tai [16] adopted the 

approach of simply enumerating all possible spanning 

trees, geometrically unfolding each of them and 

checking for overlapping faces. This approach has the 

flexibility of allowing a subsequent optimization process 

where the optimality criteria may be of a global nature 

(i.e. the criteria can only be verified from the complete 

flat layout) or allowing a subsequent interactive 

query/selection process by the designer. 

 

However, none of the above techniques adequately 

address a complication found in non-manifold 3D 

folded structures : a situation where more than two faces 

are joined at one common edge. This is a feature quite 

often present in the design of non-manifold thin-walled 

objects and in this work, such common edges are 

referred to as hyper-common edges. These edges pose 

difficulties to all the previously described techniques in 

their geometric representation and the correct way in 

which they should be split to produce a valid flat layout. 

The aim in this work is therefore to develop a versatile 

methodology and implement it into a computer program 

that can generate all the possible single-piece flat layouts 

that can be folded into some given manifold or non-

manifold 3D folded structure (including any with hyper-

common edges). In this work, all common edges of the 

folded structure are restricted to be straight lines, but 

there is no restriction on the convexity of the structure or 

the shape of the faces (i.e. they can be any polygonal 

shape : triangular, quadrilateral, pentagonal, etc.). The 

rest of this paper will explain the original algorithm from 

[16] for generating flat layouts, the 

difficulties/complications posed by hyper-common 

edges, the methodology for handling such edges, and 

the unfolding results of four example problems. 

 

2. BASIC UNFOLDING AND FLAT LAYOUT 

GENERATION PROCEDURE 

This current work is an extension of the basic flat layout 

generation procedure previously developed in [16] and 

hence that procedure is briefly reviewed here. The 

procedure was implemented as a C++ code that reads 

in a B-rep model data of the 3D structure that is to be 

unfolded, automatically generates the corresponding face 
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adjacency graph (FAG) that models the 

topology/connectivity of the faces of the folded structure, 

applies a compact output method [18] to enumerate all 

possible spanning trees of the graph, computes the 

required transformation of the faces onto each flat layout 

(as defined by each tree), applies an overlapping 

detection algorithm to check for overlapping of faces 

within each layout, and then outputs only those layouts 

with no overlapping. A simple example to illustrate the 

overall concept is shown in Fig. 1, where a 3D L-shape 

structure with seven faces is unfolded and Fig. 1(c) 

shows just one possible flat layout. 
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Fig. 1. (a) 3D folded structure. (b) FAG of folded structure. (c) 

One sample flat layout. (d) Spanning tree corresponding to 

sample flat layout. 

 

3. PROBLEMS ARISING FROM NON-MANIFOLD 

OBJECTS AND HYPER-COMMON EDGES 

In this section, a few key definitions are first made, and 

then the problems that arise from attempting to unfold 

non-manifold objects (especially those with hyper-

common edges) are identified and discussed. 

 

3.1 Definitions 

To aid further discussion, it is necessary to make some 

key definitions. 

 

Nodes and links : In relation to graphs, the vertices 

and edges of a graph will be referred to as nodes and 

links, respectively. The use of the terms ‘node’ and ‘link’ 

in this paper will avoid confusion with the terms ‘vertex’ 

and ‘edge’ which are the commonly understood terms 

used in geometry and geometric modelling. 

 

Free, common and hyper-common edges : A free 

edge is an edge that is exclusively adjacent to one face 

only. A common edge is an edge that is adjacent to 

exactly two faces. A hyper-common edge is an edge that 

is adjacent to three or more faces. 

 

Hyper-common edge set and its sequence : The 

hyper-common edge set of a specific hyper-common 

edge is the set of all faces adjacent to this hyper-common 

edge. The sequence of a hyper-common edge set is a 

sorted hyper-common edge set. The first element in the 

sequence can be any of those faces arbitrarily selected. 

However, the subsequent elements are all the remaining 

faces sorted in either clockwise or counter-clockwise 

order. 

 

Manifold and non-manifold structures: By 

definition, a manifold structure is a topological space 

where every point has a neighborhood topologically 

equivalent to an open disk of E2, where E2 is the two-

dimensional Euclid’s Space [17]. This definition asserts 

that each manifold structure requires that (1) all edges 

separate exactly two faces and (2) all vertices are 

surrounded by a single circuit of faces. Those structures 

that fail to satisfy these two criteria are considered non-

manifold. This paper focuses primarily on non-manifold 

structures that break the first criterion, namely that some 

edges of the given 3D structure can be adjacent to just 

one face or to more than two faces. 

 

3.2 Problem I: Different Structures Represented 

By Same FAG 

A FAG alone cannot fully define the topology of a non-

manifold 3D structure. As an example, Fig. 2(a), (b) and 

(c) show three different non-manifold 3D structures (and 

2(c) even contains a hyper common edge). However, 

they have the same FAG as shown in Fig. 2(d). This 

suggests that enumerating spanning trees from a FAG 

may not generate the correct flat layout since there is an 

ambiguity whenever a feature like that of Fig. 2(a), (b) or 

(c) is present in the folded structure. Fortunately, 

however, this does not pose a problem as long as the B-

rep data of the folded structure is available and utilized 

in the geometric unfolding/transformation of the faces 

onto the planar flat layout (as in the basic procedure 

developed previously and explained in Section 2). This is 

because the topological information in the B-rep data 

will correctly identify the common edge that is to be split 

to unfold the structure. However, this procedure is not 

entirely workable in the case of hyper-common edges 
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like in Fig. 2(c), and it is a problem that will be examined 

in more detail in the following section. 
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Fig. 2. (a) Triangular tubular structure. (b) Corner structure. (c) 

Structure with three faces joined at an edge. (d) Same FAG for 

all three structures. 

 

3.3 Problem II: Incomplete Splitting of Hyper-

Common Edge 

The presence of hyper-common edges in a folded 

structure poses a problem to the basic procedure of 

obtaining a flat layout by generating a spanning tree 

from the FAG of the structure. This is illustrated in Fig. 

3(a) which shows a folded structure featuring one hyper-

common edge (with hyper-common edge set {1,2,3}), 

with 3(b) showing one possible spanning tree that gives 

rise to a correct flat layout (the dashed lines show the 

links that are removed from the original FAG of the 

folded structure to reduce it to a spanning tree). 

However, Fig. 3(c) also shows a spanning tree but one 

that is topologically invalid because it represents an 

erroneous situation where the hyper-common edge has 

not been split completely since it is impossible for both 

faces 1 and 3 to be adjacent to face 2 and yet are not 

adjacent to each other. It will therefore not be an 

acceptable result for a flat layout. 
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Fig. 3. (a) Structure with hyper-common edge. (b) Topologically 

valid spanning tree. (c) Topologically invalid spanning tree. 

 

3.4 Problem III: Incorrect Splitting of Hyper-

Common Edge 

If a hyper-common edge set contains four or more faces, 

the sequence of the set is a factor to be considered 

because it restricts the possible ways in which the hyper-

common edge can be split up. Consider the structure in 

Fig. 4(a) featuring a hyper-common edge with the 

sequence of faces being {2,5,3,6}. The structure has a 

total of six faces with a FAG as shown in Fig. 4(b). Fig. 

4(c) shows one flat layout with its corresponding 

spanning tree shown in 4(d). However, this layout 

cannot be folded into the 3D structure because there will 

be a clash/intersection among the edges where the 

hyper-common edge used to be since the adjacent faces 

5 and 6 have to pass through adjacent faces 2 and 3. In 

other words, not every spanning tree leads to a layout 

that can be folded in the required manner because of the 

possibility of incorrect splitting arrangement among the 

hyper-common edge set. Such incorrect trees are also 

considered topologically invalid. 
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Fig. 4. (a) Structure with hyper-common edge. (b) FAG of 

structure. (c) Flat layout that cannot be folded into structure. (d) 

Topologically invalid spanning tree. 

 

4. SOLUTION METHODOLOGY 

The overall approach adopted in this work is to employ 

the basic flat layout generation procedure explained in 

Section 2 but with the additional capability to detect 

spanning trees with problems II and III, and eliminate 

such trees from the results before performing the 

geometric unfolding, i.e. the transformation of the faces 

onto a planar flat layout. An overlapping detection 

algorithm is then applied to each unfolded flat layout to 

check for overlapping faces within the layout, and those 
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with overlapping will thus also be discarded (note that a 

topologically valid spanning tree does not guarantee that 

it is also geometrically valid, i.e. without overlapping 

faces). 

 

The following sections will describe the computational 

algorithms developed to automatically determine the 

sequence of a hyper-common edge set, and the 

procedures to detect topologically valid/invalid spanning 

trees at locations where the hyper-common edges used 

to be. The sequence of the set has to be determined 

because this information is required for checking the 

validity of the spanning tree. 

 

4.1 Determining the Sequence 

Consider a hyper-common edge denoted by the vector 

eh and its corresponding edge set H(eh)={1,2,3,4} 

consisting of four faces as shown in Fig. 5. The sequence 

S(eh) of this set is to be determined automatically. The 

sense of each of the unit normal vectors n1 to n4 of the 

faces of this set can be consistently defined (as shown in 

Fig. 5) since all the faces share the same edge eh and the 

direction of eh is fixed. It should also be noted that all 

normal vectors of the faces sharing a same hyper-

common edge are coplanar. This can be proven by 

moving all the normal vectors onto the hyper-common 

edge as well as onto the same point along that edge. 

Since all the normal vectors must also be perpendicular 

to that edge, it follows that they now lie along the same 

plane. Since all the normal vectors are coplanar, those 

normal vectors from Fig. 5 can be drawn on the same 

plane with their corresponding orientations with respect 

to one another as shown in Fig. 6. 
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Fig. 5. Faces of a hyper-common edge set. 
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Fig. 6. Orientation of normal vectors of the hyper-common edge 

set. 

Based on the angles between the normal vectors, the 

sequence of the faces can be deduced. Any one of the 

faces can be chosen as the start of the sequence and in 

this illustration, face 1 is chosen. The angles (as shown in 

Fig. 6) between face 1 and any other face i can be 

computed as follows : 

( ) ( )
( ) ( )

1

1 1

1 1

1 1

cos if 0
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i i h
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i i h
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−

− −
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n n n n e
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According to Eqn. (1), each angle θ1-i will correctly range 

from 0 to 2π. The sequence can then be determined by 

sorting according to the size of the angles and, in this 

illustration, the sequence is of course S(eh)={1,2,3,4}. 

 

4.2 Detecting Topological Validity 

Consider a hyper-common edge set consisting of six 

faces with a sequence S(eh)={1,2,3,4,5,6} as shown in 

Fig. 7(a) together with its FAG. Note that this set may be 

just one part of a larger structure. Fig. 7(b) shows one 

possible way in which the hyper-common edge has been 

split and its corresponding spanning tree (actually only a 

portion of the overall layout's spanning tree because the 

nodes and links related to the rest of the structure are not 

shown). Notice that Problem II is present in this result 

because there is still a hyper-common edge set {2,3,6} 

remaining, while Problem III is also present because 

adjacent faces 1 and 4 have to intersect adjacent faces 2, 

3 and 6 if the layout is to be folded into the structure. 

Such a spanning tree will therefore be considered 

invalid. 

 

A possible valid way of splitting the hyper-common edge 

is shown in Fig. 7(c) together with its corresponding 

spanning tree (note that face 1 and face 3 are not 

connected to any other faces from among the hyper-

common edge set but may instead be connected to some 

other faces from the rest of the structure not shown). To 

detect the validity of any given spanning tree, the nodes 

and links pertaining to any particular hyper-common 

edge set H(eh) can first be placed along a circle in order 

according to its sequence S(eh), with all links drawn as 

straight lines. To illustrate, the valid spanning tree from 

Fig. 7(c) (which is already in its correct sequence) is 

placed within the dashed circle as shown in Fig. 8. Based 

on such an arrangement, it is now claimed that any 

spanning tree is valid only if the following two conditions 

are satisfied : 

1. No node along the circle is incident on more 

than one link. 

2. No link intersect any other link within the circle. 

The first condition eliminates Problem II because any 

node that is incident on two or more links represents an 

incomplete splitting of the hyper-common edge. This 
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condition also implies that, in a valid spanning tree, the 

maximum allowable number of links among the hyper-

common edge set is cmax , given by 

( )
max

2

h
n

c
 

=  
 

e
             (2) 

where n(eh) is the number of faces in the hyper-common 

edge set and   is the floor function. The second 

condition eliminates Problem III because any intersection 

of links represents an incorrect splitting (i.e. an 

intersection of faces when folding). The algorithm to 

detect this condition can be based on traversing each 

node in sequence and applying a form of last-in-first-out 

mechanism to check the links incident to each node. If a 

structure has more than one hyper-common edge, then 

both conditions must be satisfied for each and every 

such edge before a spanning tree is certified valid. 
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Fig. 7. (a) Hyper-common edge set and FAG. (b) Invalid 

splitting arrangement and spanning tree. (c) Valid splitting 

arrangement and spanning tree. 
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Fig. 8. Topologically valid spanning tree. 

 

5. RESULTS 

The overall procedure has been implemented in a C++ 

program running on a personal computer with a clock 

speed of 2GHz. The program is applied on four non-

manifold 3D folded structures and these structures are 

adapted from generic packaging buffer and partition 

designs. The structures are shown with and without 

hidden lines in Fig. 9 to 12, together with some of their 

resulting flat layouts. Example 1 (with 10 faces and 5 

hyper-common edges) is a tubular structure (partition) 

with both ends open. Example 2 (with 11 faces and 5 

hyper-common edges) is the same structure as that of 

Example 1 except that there is one extra end face added 

to cover the front bottom left opening. Example 3 (with 

16 faces and 9 hyper-common edges) is an example of 

an edge buffer that can be used for cushioning the edge 

of a product. Example 4 (with 16 faces and 10 hyper-

common edges) is an example of a corner buffer that 

can be used for cushioning the corner of a product. Note 

that in the number labelling of the faces in the folded 

structure of Example 4, a number in a box (e.g. 2) 

indicates an interior face, i.e. a face that is on the inside 

and cannot be seen from the outside of the structure. 

 

The results of the unfolding and flat layout generation 

procedure are summarized in Table 1. Note that there 

are no topologically valid resulting spanning trees for the 

tubular partition in Example 1 (Fig. 9), but with one face 

added to it as in Example 2, a sizable number of valid 

trees are realized but only a sampling of four valid non-

overlapping flat layouts are shown here (Fig. 10). Four 

sample layouts are also shown for Example 3 (Fig. 11). 

Due to the extremely large total number of possible 

spanning trees for Example 4, only 245,831,029 out of 

that total number of trees have been evaluated and the 

values in Table 1 pertain only to this limited number of 

results evaluated (and 20 sample layouts are shown in 

Fig. 12). 

 

 

 
 

Fig. 9. Tubular partition that has no topologically valid flat 

layout (Example 1). 
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Fig. 10. Tubular partition with an end face, and four sample 

layouts (Example 2). 

 
 

          
 

Fig. 11. Edge buffer with four sample layouts (Example 3). 
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Fig. 12. Corner buffer with 20 sample layouts (Example 4). 
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Example No. of 

Spanning Trees 

No. of Topologically 

Valid Trees 

No. of Non-Overlapping 

Flat Layouts 

CPU Time 

1 25,365 0 0 4 sec 

2 204,644 758 552 53 sec 

3 6,981,120 1,836 144 7 min 

4 1.9626 × 1010 - 361,514 42 hr  25 min 

 
Tab. 1. Summary of results for the four examples. 

 

 

6. CONCLUDING REMARKS AND FUTURE 

WORK 

Problems posed by the unfolding/splitting of faces 

adjacent to hyper-common edges in non-manifold 3D 

folded structures have been examined to understand 

their effects on the graph-theoretic modelling of the 

topology of the folded structure and the corresponding 

spanning tree representation of the unfolded flat layout. 

An overall strategy to generate flat layouts for any given 

3D folded structure is then developed based on a 

procedure to enumerate all possible spanning trees, 

detect and discard topologically invalid trees (invalid due 

to hyper-common edge complications), geometrically 

transform valid trees into their planar layouts, 

detect/discard those with overlapping faces, and then 

output the results. The procedure was applied 

successfully to four example structures featuring 

numerous hyper-common edges. 

 

Depending on the topology, some structures can have 

large numbers of possible spanning trees and 

computational time needed to unfold them may be 

prohibitive. Instead of enumerating all trees and 

detecting invalid ones, it may be more efficient to be 

able to bypass all those topologically invalid trees and 

exclusively enumerate only those valid ones. Future 

work will focus on developing systematic strategies to do 

that. 
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