
 439

Unfolding and Flat Layout Design of Non-Manifold 3D Folded Structures

Kang Tai1, Wei Liu2 and Georg L. Thimm3

1Nanyang Technological University, mktai@ntu.edu.sg

2Nanyang Technological University, liuwei@pmail.ntu.edu.sg
3Nanyang Technological University, mgeorg@ntu.edu.sg

ABSTRACT

There are practical applications in the sheet metal, packaging and various other industries for

research into the automatic development of the flat layout or pattern that can be folded into some

desired 3D folded structure. The relevant techniques developed in earlier work are based on

generating spanning trees of the face adjacency graph (the graph that represents the connectivity

among the faces of the folded structure) since any spanning tree is a potential unfolded flat layout

of that structure. However, complications in the structure, such as situations where more than two

faces are joined at one common edge, pose problems to the spanning tree unfolding methodology

that can lead to incorrect results. This work examines these problems through the connectivity and

topological representation issues involved when splitting these common edges, and proposes a

strategy to handle such complications by developing algorithms to detect topologically invalid

spanning trees. These new algorithms are incorporated into a previous procedure developed by the

authors, and the overall methodology is implemented on a computer program and applied to

unfold four example structures to generate their corresponding flat layouts.

Keywords: unfolding, folded structure, flat pattern development, topological representation

1. INTRODUCTION

There are practical applications in industry for the study

of how to design a flat layout/pattern of sheet material

that can be folded into some desired 3D geometric

structure. For example, sheet metal products are often

produced by bending (folding) a flat pattern of sheet

metal, with perhaps some welding (joining) of its edges.

Another application is in the field of packaging, where

corrugated paperboard is folded into a 3D folded

structure of some desired geometry. Usually having

more complex geometries than the ubiquitous carton

boxes, these structures are actually used inside carton

boxes as packaging cushions (also known as packaging

buffers) for protective packaging of products, or used as

partitions (also known as inserts) for holding/segregating

multiple products or components within a package. With

manufacturers coming under the impact of stronger

environmental legislation, these protective packaging

components made of paper are increasingly being

considered as viable alternatives to the traditional use of

packaging cushions made of polymer foams.

The design of a flat layout (of paperboard) that can be

folded into some desired 3D folded structure is a

challenging problem that requires creativity/ingenuity,

experience and laborious trial-and-error on the part of

the designer. As paperboards are manufactured as flat

sheets, a 3D board structure (with some complex

topology/shape to hold the product that is being

packaged) has to be produced by folding from a suitable

flat paperboard pattern/layout. Different products with

varying geometry and complexity will require much

innovation from the designer to create the various 3D

folded packaging structures and their corresponding flat

layouts. Hence the objective of this research is to aid the

designer by developing a methodology to generate

solutions to the following question : Given a 3D folded

structure, what are the flat layouts that can be folded

into that structure? As these 3D structures are composed

of piecewise planar faces and are formed by folding

some flat sheet of material, their topological

configurations are of the main concern and therefore

their geometries can be treated in a schematic form with

the faces having zero thickness and ignoring any

bending radius at the folded edges. As a result, these

folded structures are usually non-manifold objects.

Research work related to the folding of sheet or thin-

walled materials include some of the mathematical

 440

studies of origami [3][7] and even computational

algorithms developed for generating the crease pattern

for folding into various origami designs [10]. However,

in origami, the sheets of paper are usually folded into

objects which are flat or piecewise flat structures.

Another related work is the geometric modelling and

simulation of pop-up books [11]. However, the

mathematical formulations in such work focus mainly on

shape and motion information of the pop-up

mechanisms and not on the topology. Foldable

structures have also been treated and analyzed as

mechanisms by Dai and his co-workers [5][15] and

Pellegrino and his co-workers [6][8][20]. Another

interesting work is that of Kling et al. [9] where

geometric theories have been developed for generating

doubly-periodic folding patterns within one sheet. The

resulting structures may be considered as sheets with

discrete raised patterns which give the sheet desirable

properties suited for a variety of purposes and yet is

economical to produce since the manufacturing process

is essentially folding only.

Agarwal et al. [1] proposed a star unfolding technique

for unfolding convex polyhedrons by selecting some

point on the face of the polyhedron and cutting from

that point to various vertices of the structure via the

shortest paths. Biedl et al. [4] also proposed algorithms

to unfold two classes of orthogonal polyhedra by cutting

across faces. However, cutting/breaking a face into two

or more faces compromises the strength and integrity of

the structure and so from a mechanical point of view,

cutting along common edges to unfold a structure (also

known as edge unfolding) is the preferred outcome.

Bangay [2] proposed heuristic algorithms to iteratively

construct the flat layout by successively adding faces to

the layout. However, the procedures were demonstrated

only on the type of 3D polyhedral models typically used

for surface representation of objects in virtual reality

environments.

As sheet metal forming is an important manufacturing

process, much work has also been done on the

geometric reasoning of sheet metal (thin-walled) objects

to aid in their design when they are of fairly complex

geometries. Lin and Yang [12][13] and Lipson and

Shpitalni [14] developed mathematical formulations to

analyze/relate the topological properties of these 3D

thin-walled objects and their corresponding flat patterns.

Using formulae to compute the number of seams (i.e.

the common edges of a 3D thin-walled object that need

to be split in order to unfold the object into a flat layout),

Lin and Yang [12][13] then applied a breath-first search

process to assign the required number of seams (splits)

to the face adjacency matrix of the object to generate

the development matrices (each of which is the face

adjacency matrix of a potential flat layout). These

development matrices are then checked for validity (i.e.

the flat layout is a single connected piece, and there are

no overlapping faces). In principle, any spanning tree of

the face adjacency graph (that represents the topology

of the folded object) is a potential flat layout of the

object. Based on this principle, Shpitalni and Lipson

[19] proposed an approach that applies the A*

algorithm to find a maximum weighted spanning tree

that represents a valid (with non-overlapping faces) and

optimal (according to some prescribed optimality

criteria) flat layout. Liu and Tai [16] adopted the

approach of simply enumerating all possible spanning

trees, geometrically unfolding each of them and

checking for overlapping faces. This approach has the

flexibility of allowing a subsequent optimization process

where the optimality criteria may be of a global nature

(i.e. the criteria can only be verified from the complete

flat layout) or allowing a subsequent interactive

query/selection process by the designer.

However, none of the above techniques adequately

address a complication found in non-manifold 3D

folded structures : a situation where more than two faces

are joined at one common edge. This is a feature quite

often present in the design of non-manifold thin-walled

objects and in this work, such common edges are

referred to as hyper-common edges. These edges pose

difficulties to all the previously described techniques in

their geometric representation and the correct way in

which they should be split to produce a valid flat layout.

The aim in this work is therefore to develop a versatile

methodology and implement it into a computer program

that can generate all the possible single-piece flat layouts

that can be folded into some given manifold or non-

manifold 3D folded structure (including any with hyper-

common edges). In this work, all common edges of the

folded structure are restricted to be straight lines, but

there is no restriction on the convexity of the structure or

the shape of the faces (i.e. they can be any polygonal

shape : triangular, quadrilateral, pentagonal, etc.). The

rest of this paper will explain the original algorithm from

[16] for generating flat layouts, the

difficulties/complications posed by hyper-common

edges, the methodology for handling such edges, and

the unfolding results of four example problems.

2. BASIC UNFOLDING AND FLAT LAYOUT

GENERATION PROCEDURE

This current work is an extension of the basic flat layout

generation procedure previously developed in [16] and

hence that procedure is briefly reviewed here. The

procedure was implemented as a C++ code that reads

in a B-rep model data of the 3D structure that is to be

unfolded, automatically generates the corresponding face

 441

adjacency graph (FAG) that models the

topology/connectivity of the faces of the folded structure,

applies a compact output method [18] to enumerate all

possible spanning trees of the graph, computes the

required transformation of the faces onto each flat layout

(as defined by each tree), applies an overlapping

detection algorithm to check for overlapping of faces

within each layout, and then outputs only those layouts

with no overlapping. A simple example to illustrate the

overall concept is shown in Fig. 1, where a 3D L-shape

structure with seven faces is unfolded and Fig. 1(c)

shows just one possible flat layout.

(a)

1

2

3

4

5

6 7

(c)

1

2

7

3

5

6

4

4

5

73

2

1

6

(b)

(d)

4

5

73

2

1

6

Fig. 1. (a) 3D folded structure. (b) FAG of folded structure. (c)

One sample flat layout. (d) Spanning tree corresponding to

sample flat layout.

3. PROBLEMS ARISING FROM NON-MANIFOLD

OBJECTS AND HYPER-COMMON EDGES

In this section, a few key definitions are first made, and

then the problems that arise from attempting to unfold

non-manifold objects (especially those with hyper-

common edges) are identified and discussed.

3.1 Definitions

To aid further discussion, it is necessary to make some

key definitions.

Nodes and links : In relation to graphs, the vertices

and edges of a graph will be referred to as nodes and

links, respectively. The use of the terms ‘node’ and ‘link’

in this paper will avoid confusion with the terms ‘vertex’

and ‘edge’ which are the commonly understood terms

used in geometry and geometric modelling.

Free, common and hyper-common edges : A free

edge is an edge that is exclusively adjacent to one face

only. A common edge is an edge that is adjacent to

exactly two faces. A hyper-common edge is an edge that

is adjacent to three or more faces.

Hyper-common edge set and its sequence : The

hyper-common edge set of a specific hyper-common

edge is the set of all faces adjacent to this hyper-common

edge. The sequence of a hyper-common edge set is a

sorted hyper-common edge set. The first element in the

sequence can be any of those faces arbitrarily selected.

However, the subsequent elements are all the remaining

faces sorted in either clockwise or counter-clockwise

order.

Manifold and non-manifold structures: By

definition, a manifold structure is a topological space

where every point has a neighborhood topologically

equivalent to an open disk of E2, where E2 is the two-

dimensional Euclid’s Space [17]. This definition asserts

that each manifold structure requires that (1) all edges

separate exactly two faces and (2) all vertices are

surrounded by a single circuit of faces. Those structures

that fail to satisfy these two criteria are considered non-

manifold. This paper focuses primarily on non-manifold

structures that break the first criterion, namely that some

edges of the given 3D structure can be adjacent to just

one face or to more than two faces.

3.2 Problem I: Different Structures Represented

By Same FAG

A FAG alone cannot fully define the topology of a non-

manifold 3D structure. As an example, Fig. 2(a), (b) and

(c) show three different non-manifold 3D structures (and

2(c) even contains a hyper common edge). However,

they have the same FAG as shown in Fig. 2(d). This

suggests that enumerating spanning trees from a FAG

may not generate the correct flat layout since there is an

ambiguity whenever a feature like that of Fig. 2(a), (b) or

(c) is present in the folded structure. Fortunately,

however, this does not pose a problem as long as the B-

rep data of the folded structure is available and utilized

in the geometric unfolding/transformation of the faces

onto the planar flat layout (as in the basic procedure

developed previously and explained in Section 2). This is

because the topological information in the B-rep data

will correctly identify the common edge that is to be split

to unfold the structure. However, this procedure is not

entirely workable in the case of hyper-common edges

 442

like in Fig. 2(c), and it is a problem that will be examined

in more detail in the following section.

(a) (b)

(c)

3
2

1

3
2

1

(d)

2
3

1

2

1

3

Fig. 2. (a) Triangular tubular structure. (b) Corner structure. (c)

Structure with three faces joined at an edge. (d) Same FAG for

all three structures.

3.3 Problem II: Incomplete Splitting of Hyper-

Common Edge

The presence of hyper-common edges in a folded

structure poses a problem to the basic procedure of

obtaining a flat layout by generating a spanning tree

from the FAG of the structure. This is illustrated in Fig.

3(a) which shows a folded structure featuring one hyper-

common edge (with hyper-common edge set {1,2,3}),

with 3(b) showing one possible spanning tree that gives

rise to a correct flat layout (the dashed lines show the

links that are removed from the original FAG of the

folded structure to reduce it to a spanning tree).

However, Fig. 3(c) also shows a spanning tree but one

that is topologically invalid because it represents an

erroneous situation where the hyper-common edge has

not been split completely since it is impossible for both

faces 1 and 3 to be adjacent to face 2 and yet are not

adjacent to each other. It will therefore not be an

acceptable result for a flat layout.

(a)

(b) (c)

2 3

1

2

1

3 2

1

3

Fig. 3. (a) Structure with hyper-common edge. (b) Topologically

valid spanning tree. (c) Topologically invalid spanning tree.

3.4 Problem III: Incorrect Splitting of Hyper-

Common Edge

If a hyper-common edge set contains four or more faces,

the sequence of the set is a factor to be considered

because it restricts the possible ways in which the hyper-

common edge can be split up. Consider the structure in

Fig. 4(a) featuring a hyper-common edge with the

sequence of faces being {2,5,3,6}. The structure has a

total of six faces with a FAG as shown in Fig. 4(b). Fig.

4(c) shows one flat layout with its corresponding

spanning tree shown in 4(d). However, this layout

cannot be folded into the 3D structure because there will

be a clash/intersection among the edges where the

hyper-common edge used to be since the adjacent faces

5 and 6 have to pass through adjacent faces 2 and 3. In

other words, not every spanning tree leads to a layout

that can be folded in the required manner because of the

possibility of incorrect splitting arrangement among the

hyper-common edge set. Such incorrect trees are also

considered topologically invalid.

(a)

(c)

(b)

4
3

5

6

1
2

3

1 2

6 5

4

(d)

3

1 2

6 5

4

23456 1

Fig. 4. (a) Structure with hyper-common edge. (b) FAG of

structure. (c) Flat layout that cannot be folded into structure. (d)

Topologically invalid spanning tree.

4. SOLUTION METHODOLOGY

The overall approach adopted in this work is to employ

the basic flat layout generation procedure explained in

Section 2 but with the additional capability to detect

spanning trees with problems II and III, and eliminate

such trees from the results before performing the

geometric unfolding, i.e. the transformation of the faces

onto a planar flat layout. An overlapping detection

algorithm is then applied to each unfolded flat layout to

check for overlapping faces within the layout, and those

 443

with overlapping will thus also be discarded (note that a

topologically valid spanning tree does not guarantee that

it is also geometrically valid, i.e. without overlapping

faces).

The following sections will describe the computational

algorithms developed to automatically determine the

sequence of a hyper-common edge set, and the

procedures to detect topologically valid/invalid spanning

trees at locations where the hyper-common edges used

to be. The sequence of the set has to be determined

because this information is required for checking the

validity of the spanning tree.

4.1 Determining the Sequence

Consider a hyper-common edge denoted by the vector

eh and its corresponding edge set H(eh)={1,2,3,4}

consisting of four faces as shown in Fig. 5. The sequence

S(eh) of this set is to be determined automatically. The

sense of each of the unit normal vectors n1 to n4 of the

faces of this set can be consistently defined (as shown in

Fig. 5) since all the faces share the same edge eh and the

direction of eh is fixed. It should also be noted that all

normal vectors of the faces sharing a same hyper-

common edge are coplanar. This can be proven by

moving all the normal vectors onto the hyper-common

edge as well as onto the same point along that edge.

Since all the normal vectors must also be perpendicular

to that edge, it follows that they now lie along the same

plane. Since all the normal vectors are coplanar, those

normal vectors from Fig. 5 can be drawn on the same

plane with their corresponding orientations with respect

to one another as shown in Fig. 6.

1

4

2

3

n
4

e
h

n
1

n
2

n
3

Fig. 5. Faces of a hyper-common edge set.

n
1

n
2

n
3

n
4

θ
1-2

θ
1-3

θ
1-4

Fig. 6. Orientation of normal vectors of the hyper-common edge

set.

Based on the angles between the normal vectors, the

sequence of the faces can be deduced. Any one of the

faces can be chosen as the start of the sequence and in

this illustration, face 1 is chosen. The angles (as shown in

Fig. 6) between face 1 and any other face i can be

computed as follows :

() ()
() ()

1

1 1

1 1

1 1

cos if 0

2 cos if 0

i i h

i

i i h

θ
π

−

− −

 ⋅ × ⋅ ≥
=

− ⋅ × ⋅ <

n n n n e

n n n n e

(1)

According to Eqn. (1), each angle θ1-i will correctly range

from 0 to 2π. The sequence can then be determined by

sorting according to the size of the angles and, in this

illustration, the sequence is of course S(eh)={1,2,3,4}.

4.2 Detecting Topological Validity

Consider a hyper-common edge set consisting of six

faces with a sequence S(eh)={1,2,3,4,5,6} as shown in

Fig. 7(a) together with its FAG. Note that this set may be

just one part of a larger structure. Fig. 7(b) shows one

possible way in which the hyper-common edge has been

split and its corresponding spanning tree (actually only a

portion of the overall layout's spanning tree because the

nodes and links related to the rest of the structure are not

shown). Notice that Problem II is present in this result

because there is still a hyper-common edge set {2,3,6}

remaining, while Problem III is also present because

adjacent faces 1 and 4 have to intersect adjacent faces 2,

3 and 6 if the layout is to be folded into the structure.

Such a spanning tree will therefore be considered

invalid.

A possible valid way of splitting the hyper-common edge

is shown in Fig. 7(c) together with its corresponding

spanning tree (note that face 1 and face 3 are not

connected to any other faces from among the hyper-

common edge set but may instead be connected to some

other faces from the rest of the structure not shown). To

detect the validity of any given spanning tree, the nodes

and links pertaining to any particular hyper-common

edge set H(eh) can first be placed along a circle in order

according to its sequence S(eh), with all links drawn as

straight lines. To illustrate, the valid spanning tree from

Fig. 7(c) (which is already in its correct sequence) is

placed within the dashed circle as shown in Fig. 8. Based

on such an arrangement, it is now claimed that any

spanning tree is valid only if the following two conditions

are satisfied :

1. No node along the circle is incident on more

than one link.

2. No link intersect any other link within the circle.

The first condition eliminates Problem II because any

node that is incident on two or more links represents an

incomplete splitting of the hyper-common edge. This

 444

condition also implies that, in a valid spanning tree, the

maximum allowable number of links among the hyper-

common edge set is cmax , given by

()
max

2

h
n

c

=

e
 (2)

where n(eh) is the number of faces in the hyper-common

edge set and is the floor function. The second

condition eliminates Problem III because any intersection

of links represents an incorrect splitting (i.e. an

intersection of faces when folding). The algorithm to

detect this condition can be based on traversing each

node in sequence and applying a form of last-in-first-out

mechanism to check the links incident to each node. If a

structure has more than one hyper-common edge, then

both conditions must be satisfied for each and every

such edge before a spanning tree is certified valid.

(a)

(b)

4
3

5

6

2 1

3

2

5

4

1

6

4

3

5

6

2
1

(c)

3

4

5

2

1

6

3

4

5

2

1

6

3

4

5

2

1

6

Fig. 7. (a) Hyper-common edge set and FAG. (b) Invalid

splitting arrangement and spanning tree. (c) Valid splitting

arrangement and spanning tree.

3

4

5

2

1

6

Fig. 8. Topologically valid spanning tree.

5. RESULTS

The overall procedure has been implemented in a C++

program running on a personal computer with a clock

speed of 2GHz. The program is applied on four non-

manifold 3D folded structures and these structures are

adapted from generic packaging buffer and partition

designs. The structures are shown with and without

hidden lines in Fig. 9 to 12, together with some of their

resulting flat layouts. Example 1 (with 10 faces and 5

hyper-common edges) is a tubular structure (partition)

with both ends open. Example 2 (with 11 faces and 5

hyper-common edges) is the same structure as that of

Example 1 except that there is one extra end face added

to cover the front bottom left opening. Example 3 (with

16 faces and 9 hyper-common edges) is an example of

an edge buffer that can be used for cushioning the edge

of a product. Example 4 (with 16 faces and 10 hyper-

common edges) is an example of a corner buffer that

can be used for cushioning the corner of a product. Note

that in the number labelling of the faces in the folded

structure of Example 4, a number in a box (e.g. 2)

indicates an interior face, i.e. a face that is on the inside

and cannot be seen from the outside of the structure.

The results of the unfolding and flat layout generation

procedure are summarized in Table 1. Note that there

are no topologically valid resulting spanning trees for the

tubular partition in Example 1 (Fig. 9), but with one face

added to it as in Example 2, a sizable number of valid

trees are realized but only a sampling of four valid non-

overlapping flat layouts are shown here (Fig. 10). Four

sample layouts are also shown for Example 3 (Fig. 11).

Due to the extremely large total number of possible

spanning trees for Example 4, only 245,831,029 out of

that total number of trees have been evaluated and the

values in Table 1 pertain only to this limited number of

results evaluated (and 20 sample layouts are shown in

Fig. 12).

Fig. 9. Tubular partition that has no topologically valid flat

layout (Example 1).

 445

Fig. 10. Tubular partition with an end face, and four sample

layouts (Example 2).

Fig. 11. Edge buffer with four sample layouts (Example 3).

11

2

5

14

9

10

12

11

5

14
8

15

16

4

13

6

7
3

7

8

9

10

12
1

6

15

16

4

13

Fig. 12. Corner buffer with 20 sample layouts (Example 4).

 446

Example No. of

Spanning Trees

No. of Topologically

Valid Trees

No. of Non-Overlapping

Flat Layouts

CPU Time

1 25,365 0 0 4 sec

2 204,644 758 552 53 sec

3 6,981,120 1,836 144 7 min

4 1.9626 × 1010 - 361,514 42 hr 25 min

Tab. 1. Summary of results for the four examples.

6. CONCLUDING REMARKS AND FUTURE

WORK

Problems posed by the unfolding/splitting of faces

adjacent to hyper-common edges in non-manifold 3D

folded structures have been examined to understand

their effects on the graph-theoretic modelling of the

topology of the folded structure and the corresponding

spanning tree representation of the unfolded flat layout.

An overall strategy to generate flat layouts for any given

3D folded structure is then developed based on a

procedure to enumerate all possible spanning trees,

detect and discard topologically invalid trees (invalid due

to hyper-common edge complications), geometrically

transform valid trees into their planar layouts,

detect/discard those with overlapping faces, and then

output the results. The procedure was applied

successfully to four example structures featuring

numerous hyper-common edges.

Depending on the topology, some structures can have

large numbers of possible spanning trees and

computational time needed to unfold them may be

prohibitive. Instead of enumerating all trees and

detecting invalid ones, it may be more efficient to be

able to bypass all those topologically invalid trees and

exclusively enumerate only those valid ones. Future

work will focus on developing systematic strategies to do

that.

7. ACKNOWLEDGEMENT

This work was partially supported by the Singapore

Ministry of Education Academic Research Fund through

research grant RG36/98, which the authors gratefully

acknowledge.

8. REFERENCES

[1] Agarwal, P. K., Aronov, B., O’Rourke, J. and

Schevon, C. A., Star unfolding of a polytope with

application, SIAM Journal on Computing, Vol. 26,

No. 6, 1997, pp 1689-1713.

[2] Bangay, S., From virtual to physical reality with

paper folding, Computational Geometry, Vol. 15,

2000, pp 161-174.

[3] Bern, M. and Hayes, B., The complexity of flat

origami, in Proceedings of the 7th Annual ACM-

SIAM Symposium on Discrete Algorithms, Atlanta,

1996, pp 175-183.

[4] Biedl, T., Demaine, E., Demaine, M., Lubiw, A.,

Overmars, M., O’Rourke, J., Robbins, S. and

Whitesides, S., Unfolding some classes of

orthogonal polyhedra, in Proceedings of the 10th

Canadian Conference on Computational Geometry,

Montreal, Canada, 1998.

[5] Dai, J. S. and Rees Jones, J., Mobility in

metamorphic mechanisms of foldable/erectable

kinds, ASME Journal of Mechanical Design, Vol.

121, 1999, pp 375-382.

[6] Gan, W. W. and Pellegrino, S., Closed-loop

deployable structures, in Proceedings of the 44th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, Norfolk,

Virginia, U.S.A., 2003, Paper No. AIAA 2003-1450.

[7] Hull, T., On the mathematics of flat origamis, in

Proceedings of the Southeastern International

Conference on Combinatorics, Graph Theory and

Computing, Boca Raton, Florida, U.S.A., 1994, pp

215-224.

[8] Jensen, F. and Pellegrino, S., Expandable structures

formed by hinged plates, in Proceedings of the Fifth

International Conference on Space Structures,

Guildford, Surrey, U.K., 2002.

[9] Kling, D., Elsayed, E. A. and Basily, B. B.,

Manufacturing process for folded sheet materials, in

NSF Design, Service and Manufacturing Grantees

and Research Conference, San Juan, Puerto Rico,

2002.

[10] Lang, R. J., A computational algorithm for origami

design, in Proceedings of the 12th Annual ACM

Symposium on Computational Geometry,

Philadelphia, 1996, pp 98-105.

[11] Lee, Y. T., Tor, S. B. and Soo, E. L., Mathematical

modeling and simulation of pop-up books,

Computers and Graphics, Vol. 20, No. 1, 1996, pp

21-31.

[12] Lin, Y. L. and Yang, D. C. H., Automatic

development generation for thin-walled objects, in

 447

Advances in Design Automation, Vol. 1, ASME,

1994, pp 367-377.

[13] Lin, Y. L. and Yang, D. C. H., Flat pattern

generation of thin-walled objects based on a

mechanism theory, Proceedings of the Institution of

Mechanical Engineers – Part B – Journal of

Engineering Manufacture, Vol. 212, No. 4, 1998,

pp 325-334.

[14] Lipson, H. and Shpitalni, M., On the topology of

sheet metal parts, ASME Journal of Mechanical

Design, Vol. 120, 1998, pp 10-16.

[15] Liu, H. and Dai, J. S., Carton manipulation analysis

using configuration transformation, Proceedings of

the Institution of Mechanical Engineers – Part C –

Journal of Mechanical Engineering Sciences, Vol.

216, 2002, pp 543-555.

[16] Liu, W. and Tai, K., Computational geometric

modeling and unfolding of 3D folded structures, in

Proceedings of the ASME 2002 Design Engineering

Technical Conferences (28th Design Automation

Conference), Montreal, Canada, 2002, Paper No.

DETC2002/DAC-34046.

[17] Mantyla, M., An introduction to solid modeling,

Computer Science Press, Rockville, 1988.

[18] Shioura, A., Tamura, A. and Uno, T., An optimal

algorithm for scanning all spanning trees of

undirected graphs, SIAM Journal on Computing,

Vol. 26, No. 3, 1997, pp 678-692.

[19] Shpitalni, M. and Lipson, H., 3D conceptual design

of sheet metal products by sketching, Journal of

Materials Processing Technology, Vol. 103, 2000,

pp 128-134.

[20] You, Z. and Pellegrino, S., Foldable bar structures,

International Journal of Solids and Structures, Vol.

34, No. 15, 1997, pp 1825-1847.

