
 43

Design Change Synchronization in a Distributed Environment for Integrated

Product and Process Design

F. Mervyn1, A. Senthil Kumar2 and A. Y. C. Nee3

1National University of Singapore, engp1618@nus.edu.sg

2National University of Singapore, mpeask@nus.edu.sg
3National University of Singapore, mpeneeyc@nus.edu.sg

ABSTRACT

This paper deals with the synchronization of application views of product data under design
changes. This involves two main aspects, (i) a mechanism for propagating design changes to all the
applications and (ii) algorithms for dealing with design changes. The use of a common
manufacturing application middleware service, known as the Application Relationship Manager
(ARM), is proposed as a mechanism to propagate design changes. Dealing with design changes is a
domain-specific task that depends on the formulation of the domain process. How design changes
can be dealt with is explored using fixture design as a domain example. The fixture design process
is formulated using two different approaches, as a sequential design process and as an evolutionary
search process.

Keywords: design change synchronization, integrated product and process design, fixture design

1. INTRODUCTION

Integrated Product and Process Design (IPPD) [12] is a
product development concept that aims to reduce
product lead-time and cost as well as improve product
quality through the integrated concurrent design of the
product and the associated processes to realize the
product. A major research objective is the development
of a computing environment that effectively supports
IPPD.

Present day design and manufacturing applications do
not support IPPD effectively due to:
• Compatibility problems: In today’s product

development environment, various different
companies collaborate to realize a product. The use
of different software products often results in
compatibility problems. Studies have shown that
compatibility problems had cost manufacturing
companies about US$1 billion per annum in the
automotive industry alone [10].

• Lack of proper information support: Information
exchange is a critical component of a computing
environment for IPPD. Downstream applications of
the product development process require the right
information to carry out their tasks, while upstream
applications require feedback information. Although
a large amount of research has been conducted on

developing information models for different
applications, present day commercial applications
often do not provide the required information.

• Efficiency problems: Various design changes occur
in IPPD if the requirements of other domains are
not met. Each time a design change occurs,
applications need to retrieve the updated
information. Retrieving large data sets, such as
traditional CAD files, is time consuming and
unproductive.

• Synchronization problems: In the concurrent design
of the product and the associated processes, it is
necessary that all applications are accessing the
correct and updated data. Today’s design and
manufacturing applications work in isolation and
proper mechanisms are not in place for effective
propagation of design changes.

Various research efforts have proposed credible solutions
to these problems and presented integrated computing
environments that can support IPPD to various extents.
Cutkosky et al [2] presented a notable work in this
regard based on an agent approach. Agents were used to
encapsulate already developed engineering tools and
agent interaction was based on shared concepts and
terminology for communicating knowledge across
disciplines. The use of a central repository as a product
master model was another approach described by

 44

Hoffman and Joan-Arinyo [5] to create an integrated
computing environment. The clients of the master model
are domain-specific applications that can deposit and
retrieve information from the master model. The master
model repository provides mechanisms for maintaining
the consistency of the deposited information structures.
These efforts were mainly aimed at integrating
standalone design and manufacturing applications.
Standalone applications are applications that are
deployed together with the modeling kernel or CAD
systems on individual computers.

With the advent of the Internet and the associated World
Wide Web (WWW), we are witnessing a new group of
Web-based and Internet-enabled applications being
developed. These applications are generally referred to
as distributed systems. These applications show promise
in achieving a pervasive computing environment for
product development; an environment in which the
architecture of client computers does not matter
anymore. Users can access the applications from any
computer and carry out their tasks. However, many of
these applications are presently being developed in
isolation, without consideration of the integration issues.
To prevent a similar integration problem as with
standalone systems from arising, we have recently
presented an approach for developing these applications
such that they can be easily integrated and thus, able to
support IPPD [8].

In this paper, we concentrate on the synchronization
problem. The synchronization problem in a computing
environment for IPPD is different from the
synchronization problem in collaborative CAD systems
which are primarily based on co-visualization. In
collaborative CAD systems, all the CAD clients accessing
the product data have a common view of the product
data, as no further processing is carried out on the data.
Synchronization of the CAD clients accessing the product
data is achieved through refreshing all clients in real-time
taking into account a controlled sequence of operations
carried out by the different CAD clients. In an IPPD
environment, downstream applications carry out some
form of processing on the product data to derive a view
of the product necessary to carry out their tasks.
Synchronization involves maintaining the consistency of
all application views of the product data. This involves
two main aspects, (i) a mechanism for propagating
design changes to all the applications and (ii) algorithms
for dealing with design changes. In this paper, we
present the use of an Application Relationship Manager
(ARM) [8] that can be deployed on applications to
ensure design changes are propagated synchronously
and applications are accessing the correct and updated

information. We also discuss how design changes can be
dealt with, using fixture design as an example domain.

This paper is organized as follows. Section 2 presents
the related research in automatic synchronization of
downstream applications when a design is modified.
Section 3 presents the background of our approach in
developing distributed applications for IPPD. Section 4
describes the ARM. Section 5 discusses how design
changes can be dealt with in fixture design and Section
6 concludes the paper.

2. LITERATURE REVIEW

In this section, we review some of the approaches in
automatically synchronizing design changes in
downstream applications. The feature concept has been
instrumental in making sense of product data for various
downstream applications. It is thus a viable option to
synchronize downstream applications through the use of
features.

One means of doing this is through the design by feature
approach. The design by feature approach is to design a
product based on the downstream definition of features.
Wang and Wright [13] developed a feature based CAD
system called WebCAD. In their system, a designer
designs a product based on negative features. This
allows easy analysis on the manufacturability of the part.
Also, since the manufacturing features are already
defined in the product view, the manufacturing
application and the design application are automatically
synchronized when a design change is made. A
drawback of this approach is that it restricts the product
designer by only allowing the use of negative features.
Another drawback is that it only synchronizes one view,
the manufacturing view in this case.

Another approach to automatically synchronize design
changes in downstream applications is the multiple view
feature model approach. The multiple view feature
model approach generates different views of the product
model automatically through feature conversion. de
Kraker et al [3] developed a system for feature validation
and conversion. Each view has its own feature model,
which is validated by maintaining all the constraints in
the view. A central cellular model is used to link the
different views and carry out the conversion. This also
allows changes to be made in any view. A distributed
version of this system has also been developed [1]. Jha
and Gurumoorthy [6] presented an algorithm for
automatically propagating feature modifications across
different domains. The automatic propagation is based
on an algorithm [7] for extracting multiple feature
interpretations of a part across domains. De Martino et al
[4] presented the use of an intermediate part model that

 45

is shared among applications to obtain multiple views for
applications. In their system, feature recognition
techniques are used to derive feature-based models and
keep the different feature based descriptions consistent.

Hoffman and Joan-Arinyo [5] represented another
approach to propagate design changes through net-
shape element association. They presented the use of a
master model repository which contains mechanisms
where an association can be created and maintained.
We presented a similar approach [8] for propagating
design changes through the creation of relationships on
the geometric elements of a part model. This is facilitated
through the use of an ARM. The main advantage of this
approach as compared to feature conversion is the
ability of the approach to be applied to a wider range of
applications. While research has been carried out on the
definition of features for different domains, not all
applications carry out reasoning based on a feature
representation. For example, a fixture design application
often carries out reasoning based on the geometry of a
part. Fixture elements are often associated with the faces
of the part that they access to fixture a part. When a
design change occurs, it is relevant to the fixture design
application how the face has changed.

In this paper, we show how the ARM can be deployed to
create a hierarchy of relationships to support the
synchronization of product and process design
applications. Dealing with design changes is specific to a
domain. In the paper, we use the fixture design domain
to show how design changes can be dealt with. We show
that dealing with design changes is dependent on how
domain processes are formulated.

3. DISTRIBUTED APPLICATIONS FOR IPPD
In this section, we present a brief review of our approach
to developing distributed applications for IPPD. Our
approach is based on the use of a common
manufacturing application middleware.

Middleware is, in general, a set of layers that sit between
applications and commonly available hardware and
software infrastructure to make it feasible, easier and
more cost effective to develop and evolve systems using
reusable software [11]. Each layer of the middleware
offers services that clients can invoke to perform
operations needed to achieve application goals. Schantz
and Schmidt [11] decomposed middleware into four
kinds, host infrastructure middleware, distribution
middleware, common middleware services and domain
specific middleware services. Host infrastructure
middleware enhances native operating system
communication and concurrency mechanisms to create
reusable network programming components. Examples

include the Sun Java Virtual Machine (JVM) and
Microsoft’s .NET platform. Distribution middleware
extend the capabilities of host infrastructure middleware
by defining higher-level distributed programming
models. Examples of distribution middleware include
CORBA, Java RMI and Microsoft’s DCOM. Common
middleware services are domain independent services
that augment distribution middleware. These include
OMG’s CORBAservices, Sun’s Enterprise Java Beans
and Microsoft’s .NET Web services. Domain specific
middleware are tailored to the requirements of particular
domains. Schantz and Schmidt [11] pointed out that
domain-specific services are the least mature of
middleware layers today. However, they also
commented that these middleware services have the
most potential to increase system quality and decrease
time and effort to develop applications. We envision that
middleware technology or distributed object computing
technology in general will be instrumental in the future
development of design and manufacturing applications.
We have thus experimented with the development of a
common manufacturing application middleware to solve
interoperability problems between the different
distributed applications being developed in the
manufacturing domain.

Our middleware is implemented in the form as shown in
Figure 1. The layers of the middleware are distributed
between application clients and a central server. The
solid modeller interface and information model layers of
the middleware are part of the server, while the reusable
application classes are part of a client. The
communications infrastructure interfaces clients and the
server.

Fig. 1. Framework for developing independent and integrated
systems

The middleware offers two key services, ability to make
function calls to solid modeling kernels and the ARM.
Function calls to the modeling kernel result in the
formation of Product Data XML files. These files contain

 46

geometric data of the part and are stored in the server.
The schema of the Product Data XML file is shown in
Figure 2 and an example XML file for a cube is shown in
Figure 3. The reusable application classes allow parsing
and visualization of the product data stored in the XML
files. The middleware provides applications with a
compatible and dynamic interface to product models.
Readers are referred to [8] for further details on the
middleware implementation. The Application
Relationship Manager is crucial in the synchronization of
design changes and will be discussed in greater detail in
the following section.

Fig. 2. Product data XML Schema

Fig. 3. XML schema for a cube

4. DESIGN CHANGE PROPAGATION

4.1 Description of ARM

The ARM has been implemented using Java RMI and
contains two RMI interfaces, a server interface and a
client interface. A Java RMI interface describes methods
that other applications can access. Applications clients
access the server interface to deposit models for

relationship creation, create and delete relationships,
query relationships and transmit changes. The client
interface is accessed by the server to inform all clients
that a change has been made.
The server interface provides functionality through the
following methods:

• public void deposit_model (int bodytag): This
method allows a client to deposit a model in
the ARM. This model should already have been
created in the modeling kernel. Depositing the
model allows other applications to create
relationships with the model.

• public boolean create_relationship
(RelationshipInfo info) and public boolean
delete_relationship (RelationshipInfo info):
These methods allow applications to create and
delete relationships with the geometric
elements of the deposited model. We have
defined faces as the only geometric elements in
our present implementation. The
RelationshipInfo class contains the required
information for the method to make the
relationship.

• public RelationshipInfo[] query_relationship
(int facetag): This method allows clients to
query the different applications that have
created relationships with a particular face. This
allows clients to understand how the design
variables would affect other applications.

• public void transmit_design_change (int
bodytag): When this method is called, the ARM
makes a call to all client applications that have
created relationships with the product model to
inform the clients that a change has been made
to the product model.

The client interface contains one method that the server
calls to transmit design changes. The input to the method
is a list of faces that have been altered due to the design
modification. An application client can then make sense
of the changes and deal with the changes.

The use of geometric elements to create relationships
with and propagate changes is beneficial in two respects.
Firstly, geometric elements are generic enough to be
applied to a wide range of applications. Secondly, since
many downstream applications carry out reasoning
based on geometry, relationships with geometric
elements are meaningful and allow applications to deal
with changes intelligently.

4.2 Deployment of ARM

The ARM is generally deployed in all applications that
have interactions with downstream applications

Document

Body Body Tag

Faces
• FaceTag
• FaceType
• Triangles

Compressed
Geometry
• SeedCorner
• CLERS
• Corners
• Handles

 47

accessing the application data. In this section, we show
how a hierarchy of relationships is created through the
simple product development environment as shown in
Figure 4.

Fig. 4. Example of a product development environment

In this environment, there are two servers, a product
design server and a process planning server. Both the
servers host the two services offered by the middleware
and a geometric modeling kernel. The product design
client first creates a part on the product design server
using the middleware service to make function calls to
the modeling kernel. It also deposits the model in the
ARM to allow applications to create relationships. As an
example, assume the product design client has deposited
the part shown in Figure 5. This part has 16 faces which
the downstream applications can create relationships
with. The process planning client is able to access the
Product Data XML file stored in the product design
server and carry out its tasks. We assume the process
planning client carries out feature recognition, groups
features into setups and determines the sequence of
setups. The process planning client first carries out
feature recognition and creates relationships with the
faces that belong to a feature. This is illustrated in Figure
6.

Fig. 5. Example product design

Based on the feature groups and sequence of setups, the
process planning client creates the intermediate

part/workpiece models of each setup that needs to be
fixtured. These intermediate part models are deposited in
the process planning server’s ARM. The Fixture Design
client can now access the data and create relationships
with the faces of the intermediate part model. The
creation of relationships by the fixture design client is
shown in Figure 7.

This section has illustrated how a useful and basic
geometric hierarchy of relationships can be created by
deploying the ARM on all applications that have
downstream applications accessing data. The hierarchy
creates a clean separation and distribution between
applications that have direct relationships and indirect
relationships. This way, if the process planning client
makes changes to the intermediate part models, the
design changes are only transmitted to the affected
applications. The advantage is that the product model
does not have to be affected. Also, if the product design
is modified, it goes through the process planning client
before the change is transmitted to the fixture design
client. In this way the transmitted change is relevant to
the fixture design client.

5. DEALING WITH DESIGN CHANGES
When a design change occurs, all applications that
created relationships with the product model or the
intermediate part model are notified of the changes that
have occurred. It is then up to the application client to
deal with the design change. Ideally, it should not restart
its sequence of activities, but deal with it adaptively.
Dealing with design changes adaptively depends largely
on domain-specific process formulations. A domain
usually goes through a series of activities before arriving
at a solution for the problem that the domain is trying to
solve. An activity is normally dependent on other
activities for some form of input to fulfill its goals. In
general, if Activity B of a domain depends on Activity A,
it is necessary to carry out activity A and then carry out B
again to ensure that the factors that Activity B was
dependent on are consistent.

In this section, we explore how design changes can be
dealt with adaptively using the fixture design domain as
an example. We first show how design changes are dealt
with in a sequentially interactive fixture design system [9]
and then reformulate the fixture design process to
remove the sequence of activities through an
evolutionary search approach.

5.1 Dealing with design changes in a sequentially

interactive fixture design system

In [9], we presented a sequential methodology for
interactive fixture design. The general sequence of the
activities of the methodology is shown in Figure 8(a).

Slot A

Slot B

Boss

 48

The sequence begins with the loading of the workpiece
followed by choosing the locating, supporting and
clamping elements respectively.

Fig. 6. Relationship created by process planning client

Fig. 7. Relationship created by fixture design client

In the methodology, each activity is dependent on the
previous activity as shown in Figure 8(b). For example,
the locating elements determine the location of the
workpiece on the XY plane. The ability of the supporting
and clamping elements to access the necessary faces of
the workpiece depends on the workpiece location and
thus, on the locating elements. Similarly, the supporting
elements determine the height that the workpiece is
raised which in turn determine the number of risers
needed to raise a clamping element to access a clamping
face.

Due to this sequence of activities, design changes in the
interactive fixture design system are dealt with based on
the methodology shown in Figure 9. The methodology is
triggered when a design change is transmitted to the
fixture design client. It is applicable in both situations
when a fixture design has already been completed or
when the fixture design process is ongoing.

Fig. 8.General sequence of interactive fixture design
methodology (a), dependency of choices in interactive fixture
design methodology (b)

Fig. 9 Dealing with design changes in interactive fixture design

In this methodology, when a design change is
transmitted, the system first determines which fixture
elements are affected. Checking which element is
affected in fact requires an analysis into the various
factors such as the accessibility of the face by fixture
elements, ability to maintain deterministic positioning
and total restraint, and the ability to provide sufficient
support. In the present implementation, we only consider
the accessibility of the face. This is mainly because, if a
fixture element does not access a face anymore due to a
modification, none of the other factors will be satisfied.
This factor is also readily identified based on the face
change information provided by the ARM. In the
methodology, if the fixture elements affected are clamps,
then only the clamping element selection stage is redone.
If the supporting elements are affected, then the
supporting elements selection and clamping element
selection stages are redone. Finally, if the fixture
elements affected are the locators, then all three stages
are carried out again. If more than one type of fixture
element is affected, then it is taken that the fixture
element, which is earlier in the selection sequence is
affected.

As an example, it is assumed a change has been made to
Product A through the addition of a boss as shown in

 49

Figure 10(a). The resulting change of the intermediate
part model is shown in Figure 10(b). When the
transmit_design_change method of the process planning
ARM is triggered, the ARM identifies that Face 6 of IPM
1 has changed and informs the Fixture Design client. The
Fixture Design client then identifies that clamping
elements have been affected. It then reloads the new
workpiece at the same location and removes the present
clamping elements and starts the fixture design process
from the clamping stage as shown in Figure 10(c).

A disadvantage of the sequential fixture design process
formulation is that it imposes the need to start from a
certain stage of the design process. For example, even if
the clamps are not affected and the locators are affected,
it will be necessary to go through the clamping stage
again. The ability to adaptively deal with design changes
is therefore limited. In the following section, we
reformulate fixture design synthesis using an
evolutionary search approach in an aim to provide
greater adaptability in dealing with a design change.

Figure 10(a) Modified part
Figure 10(b) Modified IPM

Figure 10(c) Example of dealing with design change

5.2 Reformulating fixture design synthesis using

an evolutionary search approach

In this section, we briefly describe the use of genetic
algorithms to synthesize fixtures and the ability to deal
with design changes.

In general, a genetic algorithm begins with a randomly
generated population of solutions. Each member of the
initial population is first evaluated to determine if an
optimal or near optimal solution is present in the

population. If the termination criterion is met, the GA
does not proceed further and the problem is solved. If
the termination criterion is not met, a new population is
created by the use of genetic operators, reproduction,
crossover and mutation. The new population is then
evaluated. The procedure is then repeated till the
termination criterion is satisfied.

5.2.1 Solution representation

When designing a genetic algorithm, choosing the
representation of the solution is a central factor in the
success of the algorithm. In our algorithm, the fixture
design solution is represented through a tree encoding as
shown in Figure 11. In this representation, a fixture
solution is divided into locating faces, supporting faces
and clamping faces. No restrictions are placed on the
number of locating, supporting and clamping faces. Each
fixturing face contains fixture elements. Again no
restrictions are placed on the number of fixture elements
that have contacts with a face. Each fixture element
contains attributes element type and element position.
Placing no restrictions on the number of fixturing faces
and fixture elements allows the solution to adapt
according to the conditions of the problem. For example,
a workpiece could have a large base and might require a
greater number of supports. This representation allows
the number of fixture elements on a face to ‘grow’ to suit
the condition. Another example is in the case where a
cylindrical hole is used to locate a workpiece. A locating
pin would be able to arrest two degrees of freedom and
hence, the number of locators required would be less.
Thus, the representation can also ‘shrink’ as required.
The generic nature of the representation allows solutions
to be sought for any kind of workpiece, without any
restrictions.

Fig. 11. Representation of fixture design solution

5.2.2 Evaluation of solutions

The evaluation of the solutions is carried out using a
simulation approach. The performance of each solution
is evaluated by simulating the solution using the
interactive fixture design methodology [9]. For each
constraint that is violated in the methodology, the fitness

 50

of the solution is reduced. We refer the reader to [9] for
the details of the constraints.

5.2.3 Genetic operators

The genetic operators used in the algorithm are
reproduction, crossover and mutation. The reproduction
operator chooses the individuals in the present
population that will create offspring for the next
generation. The purpose of selection is to emphasize the
fitter individuals in the population in the hope that their
offspring will in turn have higher fitness. However, too
strong a selection procedure will mean that suboptimal
solutions with high fitness values will dominate the
population, reducing the diversity needed for evolution.
Too weak a solution will result in a slow evolution
process. In the present algorithm, a fitness proportionate
selection method is utilized.

The reproduction operator selects good solutions to be
present in the new generation, but does not create any
new solutions. It is the crossover and mutation operators
that create new solutions. The crossover operator
combines segments of different solutions to create a new
solution. An example of a crossover carried out between
the two solutions in our algorithm is shown in Figure 12.
In this system, the mutation operator is used to create a
new solution by changing the fixture element type or
position of a randomly selected fixture element.

Fig. 12. Example of a crossover

5.2.4 Design changes

An attempt is made in this paper for the GA to
adaptively deal with the design changes by developing
an appropriate initial population for the GA to evolve.
Traditionally, an initial population for a GA is randomly
generated. However, in this case, the GA is not

attempting to solve an entirely new problem. It is
attempting to solve a problem that has been modified
from a problem that it had earlier solved. Therefore, an
initial population that draws from the previous solutions
would provide the GA with a better starting point,
leading to a faster route to the final solution. In the
present system, when a design change is transmitted,
thirty per cent of the final population of solutions for the
previous workpiece is copied to the new initial
population for the modified workpiece. The thirty per
cent of solutions is chosen in a random manner.
However, it should be noted that in using previous
solutions in the new population, some of the solutions
are no longer part of the search space as a result of the
design change. For example, a face that could have
previously been used as a clamping face could have
been deleted. In order to deal with this, before copying
previous solutions to the new initial population, the
system determines if the solutions are still valid. The
ARM provides the information on which faces have been
deleted and thus, provides the necessary information to
determine if a solution is still valid. If a part of a previous
solution is no longer valid, the system randomly
generates solutions to make the solution valid. For
example, if a previous solution has clamping faces which
have been deleted the system generates new random
clamping faces and clamping elements. The rest of the
initial population consists of entirely new randomly
created solutions. The GA process is then carried on as
described in earlier.

Combining past solutions with randomly created new
solutions allows the GA not only to adaptively deal with
design changes but also explore the possibility of arriving
at entirely new and improved solutions. Further, in
using GA, each solution is evaluated as a whole and
there is no need to go through a sequence of activities.
Figure 13 shows the graphs of the number of generations
against the optimal fitness value for the original
workpiece and the modified workpiece. From the figure
it is clearly evident that the number of generations for the
modified workpiece is far less than the original
workpiece, suggesting the ability of the GA to adaptively
deal with the design change.

 51

6. CONCLUSIONS
This paper has presented the use of a common
manufacturing application middleware service known as
the Application Relationship Manager as a means to
propagate design changes to all related product and
process design applications. Downstream applications
create relationships with the geometric elements of a
product. Geometric elements provide a generic, but
meaningful means to create relationships. Deploying the
ARM on different applications creates a hierarchy of
relationships. The hierarchy creates a clean separation
between applications that have direct relationships and
indirect relationships.

Dealing with design changes is domain specific and
depends on the formulation of the domain process.
Using fixture design as an example, we formulated the
fixture design domain process using two different
approaches. The sequential fixture design process
formulation imposes the need to start from a certain
stage of the design process, thereby limiting the ability to
adaptively deal with design changes. The GA’s ability to
stochastically alter candidate solutions according to the
performance of the solutions provides a more effective
way to adaptively deal with design changes.

7. REFERENCES

[1] Bidarra, R., van den Berg, E. and Bronsvoort, W.F,
Collaborative Modeling with Features, In: CD-ROM
Proceedings of the 2001 ASME Computers and
Information in Engineering Conference, 9-12
September, Pittsburgh, PA, ASME, NY

[2] Cutkosky M.R, Engelmore R S, Fikes R E,
Genesereth M R, Gruber T R, Mark W S,
Tenenbaum J M and Weber J C, PACT: an
experiment in integrating concurrent engineering
systems, Computer, 1993, Vol. 26, pp28-37.

[3] de Kraker K J, Dohmen M and Bronsvoort W F,
Maintaining multiple views in feature modelling, 4th
Symposium on Solid Modeling and Applications,
ACM Press, 1997, pp.123-130.

[4] De Martino T, Falcidieno B and Haszinger S, Design
and engineering process integration through
multiple view intermediate modeler in a distributed
object oriented system environment, Computer
Aided Design, 1998:30(6), pp. 437-452.

[5] Hoffman C M and Joan-Arinyo R, CAD and the
product master model, Computer Aided Design,
1998:30, pp. 905-919.

[6] Jha K and Gurumoorthy B, Automatic propagation
of feature modifications across domains, Computer
Aided Design, 2000:32(12) pp. 691-706

Modi f ie d Wor k pi ece

50

52

54

56

58

60

62

1 2 3 4 5

Gener at i ons

Ser ies1

Old Workpiece

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19 21 23

Generations

O
p
ti
m
a
l
F
it
n
e
s
s

Series1

Old Workpiece Modified Workpiece

Fig. 13. Fitness vs. generations graphs for old and modified workpieces

 52

[7] Jha K and Gurumoorthy B, Multiple feature
interpretation across domains, Computers in
Industry, 2000:42(1), pp. 13-32.

[8] Mervyn F, Senthil kumar A, Bok S H, Nee A Y C,
 Developing distributed applications for integrated
 product and process design, Computer Aided
 Design, 2004:36(8) pp 679-689
[9] Mervyn F, Senthil kumar A, Bok S H, Nee A Y C,

Development of an Internet-enabled interactive
fixture design system, Computer Aided Design,
2003:35(10), 945-957.

[10] Research Technology Institute, Interoperability Cost
Analysis of the U.S. Automotive Supply Chain.
(Gaithersburg, MD: NIST Planning Report 1999).

[11] Richard E. Schantz and Douglas C. Schmidt,
Middleware for Distributed Systems: Evolving the
Common Structure for Network-centric
Applications, Encyclopedia of Software Engineering,
2001, edited by John Marciniak and George
Telecki, Wiley and Sons.

[12] U.S Department of Defense, Guide to Integrated
Product and Process Development,
http://www.acq.osd.mil/io/se/ippd/

[13] Wang F-C and Wright P K, "Web-based Design
Tools for a Networked Manufacturing Service",
1998 ASME Design Technical Conference, Atlanta,
GA, Sept. 13-16.

