
 421

An Efficient Algorithm for Recognizing and Suppressing

Blend Features

Xiufen Cui1, Shuming Gao2 and Guangping Zhou3

1Zhejiang University, xfcui@cad.zju.edu.cn

 2Zhejiang University, smgao@cad.zju.edu.cn
 3Zhejiang University, gpzhou@cad.zju.edu.cn

ABSTRACT

This paper presents an algorithm for efficiently recognizing and suppressing blend features. The
algorithm first recognizes all of blend faces from the Boundary Representation of a part; then
distinguishes them as edge-blend feature, vertex-blend feature and mixed-blend region;
furthermore, divides the mixed-blend region into pure edge-blend feature and pure vertex-blend
feature; lastly each recognized blend feature is suppressed as a whole by means of Euler Operators.
The novelty of the presented algorithm lies in that all the entities of a recognized blend feature are
suppressed in a global way, by which the efficiency of suppression is improved. In addition, the
algorithm can deal with all types of blend faces generated by various methods. In the end, some
test results are given.

Keywords: Blend feature, feature recognition, feature suppression, CAD/CAM/CAE

1. INTRODUCTION

Fig.1. Applications of blend feature recognition and
suppression

In mechanical design, blending is a common operation
used to improve the strength, the aesthetics, and ensure
the manufacturability of a part. In blending operation,
certain smooth faces are added into the part’s B-rep to
smoothen sharp edges and vertices, which are termed as
blend faces. The task of blend feature recognition is to
recognize all blend faces from a part’s B-rep and divide
them into blend features. And the goal of blend feature
suppression is to restore the original B-rep of the part by
removing all the recognized blend features.
Some application domains of blend feature recognition
and suppression (BFRS) are shown in Fig. 1. It is well
recognized that BFRS is of significance for the
integration of CAD/CAM[1] and the integration of
CAD/CAE.
Several approaches to BFRS have been developed in
the past decades[2~7]. Among them the most
representative work is the algorithms presented by
Sashikumar and Sohoni [2~4]. Their algorithms deal
with the blend faces generated by the rolling-ball based
blending technique. The algorithms first detect all the
blends; Then generate the blend chains and deduce the
chains’ sequence in which they were created based on
local heuristics around them; Lastly, the blend chains
are suppressed one by one in the reverse order of the
sequence.

 422

In 2002, H. Zhu and C. H. Menq presented a method of
simplifying B-Rep models by automated suppression of
fillet/rounds[5]. Their method firstly recognizes three
types of faces, i.e. toroidal faces, cylindrical faces and
spherical faces as fillets or rounds in terms of certain
rules; then connects them to form ring-type chains and
disc-type chains; lastly, suppresses all the chains by an
incremental knitting process. The method only deals
with constant-radius fillets and rounds.
An approach to feature simplification for freeform
surface models is presented by Joshi and Dutta in
2003[6]. Their approach recognizes and suppresses two
types of basic features, holes and fillets in freeform
surface models, as well as the combination of the basic
features. Among them, the fillets are recognized by
curvature calculations similar to the blend recognition
algorithm of Sashikumar and Sohoni[2~4], and
suppressed by skinning surfaces between the spring
edge and the spine curve.
In the paper, a new algorithm for recognizing and
suppressing blend features is presented. The algorithm is
intended to improve the efficiency of blend feature
recognition and suppression and enable the handling of
all types of blend faces generated by various CAD
systems.
The remainder of the paper is organized as follows: In
Section 2, we introduce some basic concepts about the
blend. In Section 3, we give the blend feature
recognition algorithm. In Section 4, we discuss the
handling of mixed blend region. We use Section 5 to
present the blend feature suppression algorithm. In
Section 6, we discuss the implementation of the
presented algorithm. Finally we give the conclusion in
Section 7.

2. BASIC CONCEPTS

Before describing the algorithm, we first introduce some
basic concepts.
(1) Blend face: the face generated by blending operation,
such as f3 in Fig. 2. The surface of a blend face may be a
NURBS surface or a complex quadric surface[7,8].

Fig.2. Blend face and its support faces

(2) Support face: the face that is not a blend face but
adjacent with a blend face at its smooth edge. Taking

blend face f3 as an example, f1 and f2 are two support
faces of it.
(3) Edge blend face: the blend face that replaces a sharp
edge between two faces.

Fig.3. Vertex blend face and edge blend face

(4) Vertex blend face: the blend face that is not edge
blend face, it connects smoothly several edge blend faces
that meet at a common vertex (see Fig. 3).
 (5) Cliff blend face: the blend face that takes place
between a face and an edge. The corresponding edge
that supports the cliff blend face is termed cliff edge.
(6) Blend on blend faces: the two blend faces that
interact with each other. The blend faces must be
generated by different blending operations, and the
interacting edge is termed blend on blend edge (See Fig.
4).

Fig.4. Cliff blend face and blend on blend faces

(7) Blend feature: a set of connected blend faces
corresponding to a vertex or an edge of the suppressed
model.
(8) Edge blend feature: the blend feature corresponding
to an edge of the suppressed model, such as the grayer
face in Fig. 5 that forms an edge blend feature.
(9) Vertex blend feature: the blend feature corresponding
to a vertex of the suppressed model, such as two blue
faces in Fig. 5 that form a vertex blend feature.
(10) Mixed blend region: a set of connected blend faces
that cannot be determined as a vertex blend feature or
an edge blend feature currently.
(11) Blend feature’s internal edge: the smooth edge
whose two adjacent faces are both blend faces of the

 423

blend feature. In Fig. 5, e9 is the internal edge of the
vertex blend feature.
(12) Blend feature’s boundary edges: the smooth edge
that is adjacent with only one blend face of the blend
feature. In Fig. 5, e1, e2, e3 and e4 are boundary edges of
the edge blend
feature (the grayer face). And e4, e5, e6, e7, and e8 are
boundary edges of the vertex blend feature (the blue
faces) in Fig. 5.

Fig. 5 Edge blend feature and vertex blend feature

Among all the concepts defined above, blend feature
together with vertex blend feature, edge blend feature
and mixed blend region plays a key role in this work. We
introduce these concepts and organize all the recognized
blend faces as these high level features with more
semantics to make the BFRS algorithm efficient and
simple.

3. BLEND FEATURE RECOGNITION

ALGORITHM

In this section, we describe the blend feature recognition
algorithm. Fig. 6 shows the flowchart of the algorithm.
3.1 Blend Face Recognition

(1) Blend Face Detection
The algorithm first recognizes all blend faces from the
model. Specifically, we check every curved face to see
whether it satisfies the following conditions:
1) The face itself is smooth without any sharp edge

and sharp vertex inside it.
2) The face has at least one smooth edge.
3) For any two faces adjacent with the face by smooth

edges, they aren’t parallel.
4) Area ratio between the blend face and any of its

adjacent planar face is less than a given threshold.
All the curved faces satisfying above conditions are
recognized as blend faces.
(2) Blend Face Classification
For each blend face, its support faces are determined by
finding out all its adjacent faces that are not blend faces
but share smooth edges with the blend face. According
to the number of its support faces, each blend face is
classified as one of the following two classes:

Fig. 6. The flow chart of the algorithm

1) Vertex blend face with only one or even no support

face.
2) Edge blend face with two support faces.
For the blend face that has more than two support faces,
the algorithm further detects if these support faces
intersect at a common vertex. If they intersect at a
common vertex, the blend face is classified as a vertex
blend face; otherwise it is classified as an edge blend
face.
(3) Blend Face Structure
The recognized blend faces are represented by the
following structure:
Class BLEND_FACE {
FACE* blendfac;
 //the blend face’s corresponding face in the model;
int type;
 //the blend face’s type, 0: edge blend face,
 // 1: vertex blend face;
vector<FACE*> supportfac;
 //the vector depositing all the support faces of the
 //blend face;
bool visited;
 //a mark used to indicate whether the blend face is
 //visited or not

 424

}
vector<BLEND_FACE> BLENDFS;
 //the vector depositing all the blend faces in the
model.

Fig.7 .The recognized and classified blend faces

Two examples are used to illustrate the results of the
blend face recognition as shown in Fig. 7 where all the
recognized blend faces are highlighted with “0”
indicating edge blend faces and “1” indicating vertex
blend faces.

3.2 Blend Feature Recognition

(1) Blend Feature Recognition Algorithm
The input of the blend feature recognition algorithm is all
blend faces of the model and their attributes set up in
3.1, and the output is all the blend features in the model.
The specific algorithm consists of following steps:

Step 1: Take a non-visited blend face from all the input
blend faces as a seed blend face, and set the visited item
of the blend face to TRUE. If the seed blend face is a
vertex blend face, then an initial vertex blend feature is
generated; otherwise an initial edge blend feature is
generated.

Step 2: Find out all those blend faces that have the
same type as the seed blend face and are adjacent with it
by smooth edges. These smooth edges are set as the
blend feature’s internal edges. Then take each found
blend face as a new seed blend face and repeat the
above process iteratively until no new seed blend face
can be found. At this time, a complete blend feature is
obtained.
Step 3: For each initial vertex blend feature, we further
check whether its all support faces intersect at a common
vertex. If not, it indicates that the blend feature cannot
correspond to a vertex after suppression, and it is not a
real vertex blend feature but a mixed blend region. For
this case, the algorithm handles the mixed blend regions
with the method given in the next section.

Step 4: After the generation of a blend feature is
complete, retrieve all blend faces to see whether there
still exists a non-visited blend face. If so, the above step
1-3 is repeated to generate the remainder blend features.
The algorithm ends up when all the blend faces of the
model are marked as visited.

(a) (b)

Fig.8. The recognized blend features

Fig. 8 illustrates the recognized blend features of the two
models shown in Fig. 7. The model shown in Fig. 8(a)
has one and only one vertex blend feature (the gray
region) that is composed of its all vertex blend faces. In
addition, it has six edge blend features (the yellow
regions) each of which includes only one edge blend
face. For the model shown in Figure 8(b), it has a mixed
blend region composed of six blend faces that are all
blend on blend faces (the gray region). Besides, it
contains six edge blend features (the yellow regions).
(2) Blend Feature Structure
 To effectively support blend feature suppression, after a
blend feature is recognized, it is represented by the
following structure.
class BLEND_FEATURE {
int type;

//the blend feature’s type, 0:edge blend feature,
//1:vertex blend feature, 2:mixed blend region;

vector<FACE *> blendf;
 //all the blend faces involved in the blend
feature
vector<FACE *> supportf;

//all the different support faces of the blend
faces

// involved in the blend feature
vector<EDGE *> interedge;

//all the internal edges of the blend feature
VPOINT suppression_vertex;

//the suppression vertex of the vertex blend
//feature

}
class VPOINT{
 APPOINT coors;

//the suppression vertex’s coordinates of the
// vertex blend feature

vector<EDGE *> coes;
//all the boundary edges of a vertex blend

feature
}

 425

Fig.9. The suppression vertex of the vertex blend feature

In the above structure, the suppression vertex of a vertex
blend feature refers to the vertex in the suppressed
model corresponding to the vertex blend feature. In Fig.
9, the suppression vertex of the vertex blend feature in
the left part is the highlighted vertex of the right part.

4. HANDLING OF MIXED BLEND REGIONS

As discussed above, the mixed blend region results from
cliff blend faces and blend on blend faces. Because such
kinds of blend faces make the detection of their support
faces much more difficult, resulting in the trouble for
classifying blend features, therefore, the first step of our
algorithm for handling mixed blend regions is to detect
cliff blend faces and blend on blend faces involved in
each mixed blend region.
 4.1 Detection of Cliff Blend Faces and Blend On

Blend Faces

(1) Cliff Blend Face Detection
According to the cliff blend face definition that a blend
face is a cliff blend face if it has a cliff edge, we check
whether a blend face is a cliff blend face by checking if it
has a cliff edge as follows: For each edge of the blend
face, check if it is straight and non-smooth, if so, it is a
cliff edge since the normal non-smooth edges of a blend
face must be curved.
(2) Blend on Blend Face Detection
Similar to the cliff blend face detection, we convert the
blend on blend face detection to the detection of blend
on blend edges. According to the definition of blend on
blend edge that it is the interacting edge between two
blend faces (see 2(6)), obviously a blend on blend edge
must be an internal edge of a mixed blend region. Also it
is observed that a blend on blend edge should be very
close to the common support face of the two interacting
blend faces it belongs to. This is because if its two blend
faces didn’t intersect, the corresponding edge of the
blend on blend edge in its two blend faces would be on
the common support face.
Based on the above observations, we detect the blend
on blend edges of a mixed blend region as follows:
Given a threshold R, for every internal edge of the mixed
blend region, find out the support face closest to it by
calculating the distances between its two vertices and

every support face of the mixed blend region. If the
distance between the edge and its closest support face is
less than R, then this edge is determined as a blend on
blend edge of the mixed blend region, and the closest
support face is taken as the common support face of the
blend on blend faces adjacent with the blend on blend
edge.
A problem with above method is how to set a reasonable
threshold R. In this work, we set the threshold R to be the
half of the least curvature radius of all the blend faces
involved in the mixed blend region. Such threshold is
reasonable for the mixed blend region because for any
of its normal internal edges that is not a blend on blend
edge, the distance between the edge and any support
face of the mixed blend region is equal or almost equal
to the curvature radius of the blend face adjacent with it.
Experiments have also verified the validity of such
defined threshold R.
Using the above detection algorithms, one cliff edge and
the corresponding cliff blend face are detected from the
mixed blend region in Fig. 10(a), and three blend on
blend edges and six blend on blend faces are detected
from the mixed blend region in Fig.10 (b).

4.2 Mixed Blend Region Handling

 After all the cliff blend faces, blend on blend faces as
well as their corresponding cliff edges and blend on
blend edges involved in the mixed blend region are
determined, they are dealt with as follows:
1) Topology separation. Topology separation is
performed on the mixed blend region along the cliff
edges and blend on blend edges using the Euler
Operation:

(a) Topology separation of a cliff blend face

(b) Topology separation of blend on blend faces

Fig.10. Illustration of topology separation of cliff blend face and
blend in blend face

 426

separate_topology(). This Euler Operation separates the
adjacent faces along one or more edges by creating new
edges, new loops, and re-organizing the edges of original
loops.
2) Re-classify cliff blend faces and blend on blend faces.
After the topology separation, the cliff blend faces and
blend on blend faces become normal blend faces, so
their support faces and their types are re-determined
using the method described in 3.1(2).
3) Blend feature re-recognition. Set the visited values of
all blend faces of the mixed blend region to FALSE, and
re-recognize the blend features involved in the mixed
blend region using the blend feature recognition
algorithm presented in 3.2(1).
After the above handling, any mixed blend region is
decomposed into vertex blend features and /or edge
blend features. As two examples shown in Fig.10, the
cliff blend face in Fig. 10(a) becomes a edge blend face
since it has two support faces, and the mixed blend
region is partitioned into two vertex blend features and
one edge blend feature; four blend on blend faces in Fig.
10(b) become edge blend faces since all of them have
two support faces, and the mixed blend region is
decomposed two vertex blend features and two edge
blend features.

5 BLEND FEATURE SUPPRESSION

ALGORITHM

Blend feature suppression is to delete all blend features
of the model to obtain a simplified model without blend
faces. It involves the modification on both the topology
and geometry of the model. In this work, Euler
Operations are adopted to make topological
modification, which modify topology locally and
guarantee the modified model valid.
 Specially, Three Euler Operations are used. One is DEV
() that is employed to delete an edge and make the two
vertices of the edge merged. Another one is DEF () that
is utilized to collapse a face and delete one edge on it.
The third is DFS () that deletes several faces from the
model. Compared with topological modification,
geometry modification is relatively simple. By calculating
the intersection line between two related support faces
and the intersection point among three or more related
support faces, we obtain the required new geometry
entities. Fig. 11 shows the flowchart of the blend feature
suppression algorithm (topology part), the right grids
denote the used Euler Operations in the corresponding
step. The algorithm is divided into two stages:
Stage 1: Suppression of all the vertex blend features
For each vertex blend feature VBF
(1.1) Delete all the blend faces of VBF using DEF (). And
determine the geometry of the VBF’s corresponding
vertex by calculating the intersection point among all the
support faces of the VBF.

(1.2) Collapse all the common edges between the blend
faces and support faces of VBF using the DEV(). The
deleted edge’s remaining vertex is set as the suppression
vertex of VBF.

Fig.11 The flowchart of blend feature suppression algorithm

Stage 2: Suppression of all the edge blend features
For each edge blend feature EBF
(2.1) Merge all the blend faces of EBF into a single face
using DEF () and DEV () if EBF contains more than one
blend faces. During this process, the edges that have the
same adjacent faces are merged into a single edge using
the DEV ().

(2.2) Collapse the end edges of EBF and the edges with
only one adjacent face, i.e. the blend face of EBF using
the DEV (). For the end edge, its remaining vertex’s
geometry after collapsed is set as the intersection point
among EBF’s support faces and the face that is adjacent
with the edge but not the blend face. For the other
collapsed edge, since it must be on the boundary of a
VBF, its remaining vertex’s geometry is set as the
geometry of the corresponding vertex of the VBF.

 427

(2.3) Collapse the blend face of EBF into a single edge
using DEF (), set as the intersection line between the
EBF’s support faces.

Fig.12. Process of suppressing a vertex blend feature and three
edge blend features.

Fig. 12 shows the process of topologically suppressing a
vertex blend feature and three edge blend features. The
shaded region showed in Fig. 12(b) is a deleted the
blend face; The Fig. 12(c) shows the result after deleting
the edges between the blend face of the vertex blend
feature and its support faces. Fig. 12(e) shows the result
of suppressing three remaining edge blend features by
first deleting six edges (Fig. 12(d)), then deleting three
faces (Fig. 12(e)).

Fig.13. Blend feature suppression of a model with blend on
blend faces.

In Fig. 13, the blend feature suppression of a complete
model is shown. Specifically, Fig. 13(a) shows the
detected mixed blend region composed of six blend
faces; Fig. 13(b) shows the result after topological
separation of the mixed blend region; Fig. 13(c) shows
the result after the two vertex blend features are
suppressed; Figure 13(d) shows the final result.

6. IMPLEMENTATION

 The proposed algorithm has been implemented using
ACIS 6.0 solid modeler, C++ language, running on
win2000 operation system, and tested by some
examples. Fig. 14 shows six tested examples, each of
which consists of two parts: a part with recognized blend
features (shaded areas) and the corresponding
suppressed part. The execution time for recognizing and
suppressing blend features of these models are
respectively: (a) --- 0.063s, (b)---0.078s, (c) --- 0.063s,
(d) --- 0.062s, (e) --- 0.048s, (f) --- 0.079s.

7. CONCLUSIONS

 In this paper, an efficient algorithm of blend feature
recognition and suppression is presented. The algorithm
gives the concept of blend feature and the approach to
recognize blend feature, presents a new idea about blend

 428

Fig.14. Tested examples of blend feature recognition and

suppression.

suppression that suppresses the blend feature’s all blend
faces as a whole. Our algorithm has several merits, it is
of efficiency, and works for all types of blend faces
generated by various blending methods.
The major contributions of the work lie in:
1) The concept of blend feature with higher-level

semantics is proposed;
2) Blend features are suppressed as a whole, making

the blend suppression efficient and simple.
Future work will be focused on following aspects:
Enable the algorithm to deal with blend features between
1) sculpture surfaces.
2) Facilitate the algorithm to recognize and suppress

the blend feature interacted by non-blend features.
3) Enable the algorithm to handle the blend feature

with its support face missed.

8. REFERENCES

[1] Gao S. and Shah J. J., Automatic recognition of
interacting machining features based on minimal
condition subgraph. Computer Aided Design, 1998,
Vol. 30(9), pp. 727-739.

[2] Venkataraman S, Sohoni M, Blend Recognition
Algorithm and Applications. Proceedings of the sixth
ACM Symposium on Solid Modeling and
Applications, D.C. Anderson and K. Lee, eds., ACM
press, Ann Arbor, June 2001, Michigan, pp.99-108.

[3] Venkataraman S, Sohoni M, Rajadhyaksha R,
Removal of Blends from Boundary Representation
Models. ACM Symposium on Solid Modeling and
Applications, ACM press, June 2002, Germany, pp.
83-94.

[4] Venkataraman S, Sohoni M, Reconstruction of
Feature Volumes and Feature suppression. ACM
Symposium on Solid Modeling and Applications,
ACM press, June 2002, Germany, pp: 60-71.

[5] H. Zhu and C. H. Menq, B-Rep model simplification
by automatic fillet/round suppressing for efficient
automatic feature recognition. Computer Aided
Design, 2002, Vol. 34, pp. 109-123.

[6] N.Joshi and D.Dutta, Feature simplification
techniques for freeform surface models, Journal of
Computing and Information Science in Engineering,
September 2003, Vol 3, Num 3, pp. 177-186.

[7] T.lim, J.R.Corney, D.E.R Clark, A laminae
approach to constructing geometric feature
volumes, Solid modeling, 2001,pp. 183-192.

[8] Vida J, Martin R.R. Varady T., A survey of blending
methods using parametric surfaces. Computer-
Aided Design, Vol.26, No 5.February 1994, pp.
341-364.

[9] I C Braid, Non-local blend of boundary models.
Computer-Aided Design, Vol. 29, No 2, 1997, pp.
89-100.

