

411

Feature-Based Design Modification in

Co-Assembly Design

C. Lu1, J. Y. H. Fuh1, Y. S. Wong1, W. D. Li2 and Y. Q. Lu2

1National University of Singapore, mpefuhyh@nus.edu.sg

 2 Singapore Institute of Manufacturing Technology

ABSTRACT

This paper discusses the feature-based design modification in a collaborative assembly (co-
assembly) design environment. A hierarchical co-assembly representation model has been
proposed and a proposed assembly feature design scheme has been given to resolve the co-
assembly design issue. In order to realize the design modification propagation control, an XML
schema was developed to transfer the assembly design information by defining each feature using
the XML format based on the co-assembly representation model proposed. The detailed design
modification propagation control mechanism has been demonstrated through an example case
study. Furthermore, a system framework suitable for realizing the co-assembly design modification
is also proposed and developed.

Keywords: Collaborative assembly design; assembly feature; XML; design modification

propagation

1. INTRODUCTION

During product design, assembly design enables

designers to provide a complete concept of a product
that usually consists of many different parts. Generally, in
traditional computer-aided assembly design, each part is
designed in a standalone computer system and then
assembled into a sub-assembly or a more complex
product by one or a group of designers in the same
location. With the development of the Internet and
communication technology, more and more products are
designed and manufactured in different locations to meet
the fast-changing market requirements. Rezayat [1]
reported that about 50-80% of the components in a
product from Original Equipment Manufacturers (OEMS)
are outsourced to external suppliers geographically
dispersed. Hence, products are usually divided into
several sub-assemblies or even more detailed parts and
are assigned to many designers located in different
geographical sites to speed up the design process.

In such a collaborative design environment, when every
designer finishes designing his parts according to the
initial design requirements, those parts should be
assembled together correctly. However, if a designer
modifies his design after the assembly process is finished,
he does not know how the modification can affect the
other parts designed by other designers because the
whole assembly relationship with other associated parts
are not known to him. Hence, it is unavoidable that
some conflicts arise during the co-assembly design

process. Therefore, it is imperative to develop a
methodology to support the proper design modification
of each part when the mated parts have been modified
in a co-assembly design environment. In order to
address this problem, this paper proposes a novel
feature-based hierarchical data representation for co-
assembly design, gives a new definition of assembly
features, and studies the design modification
propagation control mechanism.

2. LITERATURE REVIEW

In a co-assembly design process, one of the key
researches is to develop a proper assembly
representation approach to specify the relationship
between different parts.

Conventionally, the assembly feature is used to represent
the assembly relationship between different parts in an
assembly, but the collaboration between different
designers is not considered [2-8]. Therefore,
these developed assembly representations are not
adaptive to the assembly design in a collaborative design
environment.

In order to address this problem, some researchers
proposed new definition of assembly features.
Shyamsundar and Gadh [9] defined an assembly feature
as a property of an assembly unit with respect to other
components. In addition, the authors proposed the
interface assembly features as a subset of the assembly
features. These interface assembly features are

412

considered as hard constraints and cannot be modified
unilaterally by the designer. It can only be changed
through the negotiation with other designers. Therefore,
modifications of an assembly feature can only be
executed when all corresponding designers in different
geographical locations are working simultaneously, and
the real-time design modification cannot be realized
when some designers are absent sometime.

Chen et al. [10] proposed a co-assembly representation
including Master Assembly Model (MAM) and Slave
Assembly Model (SAM). MAM is a complete
representation stored in the server, and SAM is a
simplified version of MAM used for visualization in the
client. The MAM includes the composite component
information, atomic component information and link
entity information. This representation can realize the co-
assembly modeling, but it cannot realize the real-time
design modification in a collaborative design
environment either.

For some research works related to the real-time design
modification in a collaborative design environment,
Bidarra et al. [11] and Noort et al. [12] presented a
multiple-view feature modeling approach to integrate
part design and assembly design. This approach
integrates a part’s detailed design view and the assembly
design view by linking the part model with the associated
components in an assembly model, thus enables the
system to update a part’s detailed design when the
associated component modified, and vice versa.
However, it focuses on the modification propagation
between a part’s detailed design and associated
component design in the assembly design environment,
but does not consider how the design modification of
one part affects the other parts designed by other
partners in the co-assembly design environment. It does
not consider the network-based working relationship
between different designers.

Mori and Cutkosky [13] proposed an agent-based
architecture and a set of algorithms to coordinate the
actions of different design agents using the theory of
Pareto optimality. The agents are reactive and they can
track and respond to changes in the state of the design
when one designer changes his design and thus brings in
the conflicts. In each design agent, there is a design
process manager which is responsible for recording the
design process, and manages rule-based knowledge to
coordinate and control the actions of agents. However,
the communicating protocol to exchange information
between the design agents is simple and limited, so that
this architecture is not suitable for the more complex co-
assembly design.

3. AN ASSEMBLY REPRESENTATION MODEL

FOR COLLABORATIVE DESIGN

3.1. Feature-based Hierarchical Co-assembly

Representation

In co-assembly design process, how to represent the
assembly is very important to realize the real-time design
modification and communication between different
designers geographically dispersed. It requires represent
not only the assembly relationship between features of
different parts, but also the network-based working
relationship between different designers.

Based on the above requirement, a feature-based
hierarchical co-assembly representation has been
proposed as shown in Figure 1. This hierarchical data
structure organizes an assembly as a compound of sub-
assemblies, and the sub-assemblies are composed of
several parts. The parts can be divided into a number of
form features that are composed of boundary entities
using Boolean algorithms. In addition, a part has one
element “client ID” which indicates the designer for this
part. In the following classification, each form feature has
two basic elements: “modification attribute” and “mating
constraints”. The modification attribute includes two
states: “changeable” and “constant”. The changeable
state means the geometrical shape of this form feature or
its position in the assembly can be changed after the
assembly design finished, and the constant state means
the both above must be kept the same. Typically, the
constant attribute is often used in some critical and
standard parts in the assembly. The “ClientID with rights
to modify” indicates the designers with rights to modify
the feature. The other basic element, i.e. “mating
constraints”, has two attributes: “no” and “yes”. If “no”,
this form feature does not have any assembly
relationship with other form features; otherwise, “yes”
means the feature has the assembly relationships. If a
feature has assembly relationships, the “mating
condition” of this feature further includes sub-elements:
“feature ID mated with”, “geometric constraints”,
“degrees of freedom” and “motion limits”. The “feature
ID mated with” points to the form feature mated with it,
and through this form feature, the corresponding part ID
and client ID can be searched and retrieved.

This hierarchical data structure not only represents the
longitudinal “part-of” relationships, but also the
latitudinal “mating” relationships between different form
features belonging to different parts which are
designed by the different designers geographically
dispersed. In addition, by assigning the modification
attribute and modification rights of each form feature,
the design modification propagation routes can be built
up when the design of a form feature is modified in the
co-assembly design environment.

413

Feature ID Mating constraints

Feature ID

Part ID

Client ID

Part ID

Client ID

Constant Changeable

Client ID with rights to modify Client ID with rights to modify

Modification attribute Modification attribute

Constant Changeable

Fig. 2. Structure of assembly features

Fig. 1. Feature-based hierarchical co-assembly representation

Subassembly

Assembly

Part ID

Client ID

Modification attribute Mating constraints

Constant Changeable No Yes

Part ID Part ID

Feature ID Feature ID Client ID Feature ID Feature ID

Client ID with rights to modify

Subassembly

Part ID Part ID

Subassembly

Mating condition

Geometric constraints Feature ID mated with

Corresponding part ID

Corresponding client ID

Degree of freedom Motion limits

414

3.2. A Definition of Assembly Feature for

Collaborative Design

The previous works are not suitable for the real-time
design modification in co-assembly design environment.
In our assembly representation approach, the defined
assembly feature includes not only the relationship
between two form features, but also the relationship
between two different designers in different geographical
locations. From Figure 1, the definition of assembly
features is extracted and shown in Figure 2. Only the
form feature that has the mating relationship with others
can be used to combine into the assembly feature.

In our new definition of assembly features, the assembly
feature is divided into two portions — internal assembly
feature and external assembly feature. The internal
assembly feature lies within the dashed rectangle (see
Figure 2), and it represents the assembly relationships
between two form features through mating constraints,
which often include geometric constraints, degree of
freedom and the motion limits. The assembly feature
outside the dashed rectangle is the external assembly
feature that includes the modification attributes,
corresponding part ID and client ID of the form features.

Basically, the internal assembly feature is the same as the
traditional assembly feature, and the main function is to
define the assembly relationships between form features.
However, the external assembly feature defines the other
two important factors in the co-assembly design
environment: (1) corresponding part ID and client ID,
and (2) modification attributes.

Fig. 3. Assembly consisting of thee parts

4. ROLE OF CO-ASSEMBLY REPRESEN-

TATION IN REAL-TIME DESIGN MODI-

FICATION

In this section, an example will be given to illustrate the
role of this new assembly representation model for real-
time design modification in the co-assembly design.

In Figure 3, a simple assembly consists of 3 parts - Part1,
Part2 and Part3, and each part is to be designed by
designers geographical dispersed, i.e. Client1, Client2
and Client3, respectively. The cylinder feature of Part1
has the mating relationship with the hole feature of Part2
and the hole feature of Part3 respectively. Hence, there
are two assembly features in this assembly: one between
Part1 and Part2, and the other between Part1 and Part3.
The designer of Part1 sets the modification attribute of
the cylinder feature of Part1 as “changeable”. The
designer of Part2 also sets the modification attribute of
the hole feature of Part2 as “changeable”. The designer
of Part3 sets the modification attribute of the hole feature
of Part3 as “constant”. These designers do not assign the
modification rights to each other, then the assembly
feature between Part1 and Part2 can be represented in
Figure 4, and the assembly feature between Part1 and
Part3 can be represented in Figure 5.

 Figure 5. Assembly feature between Part1 and Part3

Cylinder feature Mating

constraints

Hole Feature

Part 1

Client 1

Part 3

Client 3

Client 1 with rights

to modify

Modification attribute

Changeable Constant

Modification attribute

Figure 4. Assembly feature between Part1 and Part2

Cylinder feature Mating

constraints

Hole Feature

Part 1

Client 1

Part 2

Client 2

Client 1 with rights

to modify

Modification attribute

Changeable Changeable

Modification attribute

Client 2 with rights

to modify

415

In the co-assembly design process, after the assembly
modeling of these three parts is completed, if the
designer in Client2 modifies the design of the hole
feature of Part2 by increasing the diameter of hole D2 to
D2’, through the assembly information and the working
relationship defined in the assembly feature between
Part1 and Part2 in shown Figure 4, this change should
first be propagated to the cylinder feature of Part1, and
the diameter of the cylinder D1 should be increased to
D1’. Then, through the assembly information and the
working relationship defined in the assembly feature
between Part1 and Part3 in shown Figure 5, the
modification of the cylinder feature should be
propagated to the hole feature of Part3, and its diameter
should also be increased. However, since the
modification attribute of this hole feature is assigned
“constant”, the diameter D3 must maintain constant.
Finally, the modification in Part2 and the two assembly
features defined jointly decide the design modification as
follows:

(1) The designer in Client1 should modify Part1 into a
step cylinder with the diameter D1’ and D1.
(2) The designer in Client3 should keep Part3 remain
unchanged.
The design modification results are illustrated in Figure
6.

Another condition defined by designers is that the
assembly feature between Part1 and Part2 keeps
constant as in shown Figure 4, but the assembly

feature between Part1 and Part3 is changed, as the
modification attribute of the hole feature in part3 is set
“changeable” by the designer in Client 3.

Then the modification in Part2 and the two defined
assembly features should jointly decide two design

modification schemes. The first one is the same as that
shown in Figure 6:

(1) The designer in Client1 should modify Part1 into a
step cylinder with the diameter D1’ and D1.

(2) The designer in Client3 should keep Part3 remain
unchanged.

The second scheme is shown in Figure 7:

(1) The designer in Client1 should modify Part1 into a
cylinder with the increased diameter D1’.

(2) The designer in Client3 should increase the hole
diameter of Part 3 to D3’.

From this example, we can see that through different
definitions of assembly features including internal and
external assembly feature, the design modification of the
form feature of one part can trigger different change
propagation routes in the co-assembly design, and we
can get the different design modification results of the
other parts designed by other designers geographical
dispersed.

5. DESIGN MODIFICATION PROPAGATION

CONTROL MECHANISM

5.1 XML Representation

Extensible Markup Language (XML) is a simple, very
flexible text format derived from SGML (ISO 8879).
Originally designed to meet the challenges of large-scale
electronic publishing, XML is also playing an increasingly
important role in the exchange of a wide variety of data
on the Web and elsewhere [14].

Since XML data format is flexible to be specified by the
user, it is suitable to embed and transfer some kinds of
information across the Internet.

5.2. Using XML File to Exchange Information

In order to control the design modification propagation
and realize real-time design modification, two kinds of
XML file formats have been adopted to define different
contents. Based on them, the design parameters and
assembly information of features can be exchanged
during the co-assembly design process.

Format 1: XML file for defining the design parameters of
each feature

We use XML file to define the design parameters of each
feature. When a designer input the parameters of each
feature in a feature-based design working model in his
client, the XML file defining the parameters can be
written through the XML writer in the client. The

Figure 7. The design modification results (2)

Figure 6. The design modification results (1)

416

example of XML file defining the parameters of each
feature of Part 2 shown in Figure 3 is illustrated in List 1,
which includes two features: a hole feature and a
cylinder feature.

Format 2: XML file for defining each feature and the
assembly information

In order to transfer the assembly information using an
XML file, we define each feature using the XML file
format according to the feature-based hierarchical co-
assembly representation proposed in Section 3. The
XML file defining each feature and the assembly
information are written through the XML writer in the
client when assembly modeling is completed.

List 2 is an example of XML file that defines each feature
and their assembly information in Part 2 shown in Figure
3.

5.3 XML File Parsing Process

When the feature defined in the above XML file-
<featureID> “201” is modified, through the XML parser
implemented we can extract the value of node <value>
in the parent node <mating_constraints>; since it is
“yes”, it is an assembly feature with assembly
relationship with others. Then we further extract the
value of the node <feature_ID_mated_with>, which is
the feature that has the assembly relationship with the
modified feature and will be affected by the design
modification. Otherwise, if the value of the node
<value> in the parent node <mating_constraints> is
“no”, e.g. <featureID> “202”, it is a feature without
assembly relationship, and the modification of it cannot
affect other features. All this process can be executed by
the XML parser when the designer sends his XSL file to
the parser according to his requirement. The parsing
result- a HTML file including the modified feature

information and the mated feature information, can be
generated automatically when the parsing process is
finished. Figure 8 is the parsing result of List 2 when
<featureID> “201” is modified, and the result is
displayed as a Web page.

From the XML file in List 2, once we extract the value of

<?xml version="1.0"?>
<part>
<feature>
<featureID>201</featureID>
<name>hole</name>
<length>50</length>
<diameter>30</diameter>
</feature>
<feature>
<featureID>202</featureID>
<name>cylinder</name>
<length>50</length>
<diameter>100</diameter>
</feature>

List 1. XML file defining design parameters of each
feature in Part 2

<?xml version="1.0"?>
<part>
 <feature>
 <ID>
 <featureID>201</featureID>
 <partID>2</partID>
 <clientID>2</clientID>
 </ID>
 <modification_attribute>
 <value>changeable</value>
<clientID_with_rights_to_modify>2</clientID_ with

_rights_to_modify>
 </modification_attribute>
 <mating_constraints>
 <value>yes</value>
 </mating_constraints>
 <mating_condition>
<featureID_mated_with>”101”</featureID_mated_with

>
 <mating_type>”fit”</mating_type>
 </mating_condition>
 </feature>
<feature>
 ……
 </feature>
</part>

List 2. XML file defining each feature and the assembly
information in Part 2

Fig. 8. Parsing result of XML file (List 2) when
<featureID> “201” is modified

417

<featureID_mated_with> which is “The mated
featureID” of the modified <featureID> “201” in the
web page (Figure 8), we can search the corresponding
XML files defining “The mated featureID”, and then
parse these files in the same way. In this example, the
feature with the <featureID> “101” is affected by the
modification of <featureID> “201”, then the XML file
defining <featureID> “101” will be parsed and the
other corresponding XML files are searched. The
flowchart of the whole parsing process is given in Figure
9.

The XML file defining the <featureID> “101” is shown
in Figure 10. This file defines each feature (only one
feature) and their assembly information in Part 1 shown
in Figure 3. Because the <value> in

<modification_attribute> is “changeable”, the
<featureID> “101” would be affected by the
modification, and this XML file should be parsed in the
same way. (On the contrary, if <value> in
<modification_attribute> is “constant”, this feature
cannot be modified. That is, we do not need to parse this
file further, and the design modification cannot
propagate through it to others.) The client who designed
the <featureID> “101” will receive the XML file that
defines the updated design parameters of <featureID>
“201” as in List 1. The designer can use

the new information in List 1 to modify the affected
<featureID> “101”. Using the same parsing process, the
modification of <featureID> “101” can be propagated

“Yes”

“No”

Check next <featureID_

mated_with>

Check next modified <feature>

XSL file

XML file

XML Parser

Extract <Value>of <mating _constraints>

in one modified <feature>

It’s assembly feature, then extract

<featureID_mated_with>

Stop parsing it; it’s not

assembly feature

Search the corresponding XML

 files defining the above features

The design modification can be propagated to this

feature, then parse it in the same way as above

Stop parsing it; the design

modification cannot be

propagated to this feature

End

User Client

Check next <feature

_ID_mated_with>

Check next modified <feature>

“Constant”
“Changeable”

User Client

Parse and extract <value> in

<modification_attribute>

Figure 9. Flowchart of XML file whole parsing process

418

to <featureID> “301” in Part 3 based on the assembly
information defined in the XML file (Figure10).

The parsing result of the XML file defining the
<featureID> “101” (see Figure 10) when <featureID>
“101” is modified is displayed in Figure 11.

6. CASE STUDY

Through the above parsing process, it builds a design
modification propagation mechanism in co-assembly
design.

Fig. 10. XML file defining feature and assembly
information in Part 1

Figure 11. Parsing result of XML file in Figur10

Figure 14. Some features of each part

Fig. 13. The design modification propagation triggered by
modification of F11 & F12

F63

F62

F61

F11

F12

F21

F22

F32

F31

F73

F72

F92

F93

F41

F42

F43

F52

F53

F51

F82

agains

t

fit

fit

fit

fit fit

fit

agains

t

agains

t

fit

fit

Figure 12. Simplified gearbox assembly diagram

419

In this section, we use a simplified gearbox assembly
(Figure.12) to demonstrate the real-time design
modification in co-assembly design. Figure 14 shows
some features (only some features with mating
constraints are marked) of each part designed by
different designers geographically dispersed. Figure.13
shows the design modification propagation routes
controlled by the design modification propagation
control mechanism in section 5 due to the modification
of F11 and F12. In this case, if the designer increased the
diameter of the gear (PART 1) and its internal diameter,
then F11 and F12 are modified, these modifications are
propagated through the different routes. For instance,
F21 is affected by the modification of F12, and the
modification of F21 is propagated to F31, the designer of
PART 3 should increase the diameter of F32 in order to
keep a certain wall thickness, then this modification
should be propagated to F41. The designer of PART 4
increase the diameter of F41 to ensure the contact with
F32 and this modification is further propagated to F53.

The above design modification propagation conditions
are based on the assumption that modification attribute
of each feature is changeable, otherwise, the propagation
will be stopped at any feature with the “constant”
modification attribute.

7. SYSTEM IMPLEMENTATION

According to the problem stated in this paper, a
prototype system has been developed and the system
framework is shown in Figure 15. It is a three-tier client-
server structure that includes modeling server, design
client and Apache Web server.

The modeling server executes the modeling function to
realize the part and assembly modeling. It communicates
with the design clients through Java RMI (Remote
Method Invocation). When the design client sends the
designing order to the modeling server through Java RMI,
the modeling server finishes the modeling by calling
OpenCascade modeling kernel [15] through JNI (Java
Native Interface). The modeling result is exported to the
VRML file and feed back to the client for visualization in
the Java 3D environment.

In the design client, when the designer input the design
parameters of the feature in a feature-based design
model, these parameters are written into an XML file as
in List 1 through the XML writer in the client. In addition,
the XML files defining the feature and the assembly
information as in List 2 are also written through the XML
writer in the client when the
assembly modeling is finished. When a feature is

Modeling Server
OpenCascade

Modeling Kernel

Java

RMI

Modeling

Function JNI

Client

Java 3D canvas

Java

RMI

XML Writer Java Applet

VRML

Parser

Client

XML Writer Java Applet

VRML

Parser
Java 3D canvas

Java

RMI

Internet / HTTP / RMI

Apache Web server

XSL file

Parsing requirement
XML/HTML file

Design modification information

Java

Servlet
Design Modification Propagation Control
Service

 XML Parser XML Writer

XML file
Feature & assembly information

Design parameter

Figure 15. System framework

420

modified in one client, two types of XML files and the
XSL file defining the parsing requirement by the designer
are transferred to the Apache Web server for the design
modification propagation control service. The result, an
XML/HTML file embedded with the design modification
information will transfer to the client due to the features
designed by it are affected by the modification of other
features. The detailed design modification propagation
control mechanism has been illustrated previously in
section 5.

8. CONCLUSIONS

This paper discusses the feature-based design
modification in co-assembly design. A set of
methodologies have been developed to resolve the
problem and to maintain the consistency of the whole
assembly.

The main contributions of this work can be summarized
as follows:

 (1) Through a feature-based co-assembly representation
model and a new assembly feature scheme, the
assembly relationship between different parts and the
working relationship among different designers
geographically dispersed can be built up. In addition, the
assembly feature can help decide the design modification
propagation routes in the co-assembly design process.

 (2) In order to transfer the assembly design information,
an XML schema has been adopted based on the
proposed co-assembly representation model, and an
XML parsing mechanism was developed to realize the
design modification propagation control.

(3) The system framework suitable for realizing the real-

time design modification in a co-assembly design
environment has also been developed and demonstrated.

9. REFERENCES

[1] M. Rezayat, The enterprise-web portal for life-cycle
support, Computer-Aided Design, Vol.32, No. 1,
2000, pp 85-96.

[2] J.J. Shah, M.T. Rogers, Assembly modeling as an
extension of feature-based design, Research in
Engineering Design, Vol.5, 1993, pp 218-237.

[3] X.G. Ye, J.Y.H. Fuh and K.S.Lee, Automated
assembly modeling for plastic injection moulds, The
International Journal of Advanced Manufacturing
Technology, Vol.16, 2000, pp 739-747.

[4] W. van Holland, W.F. Bronsvoort, Assembly features
in modeling and planning, Robotics and Computer

Integrated Manufacturing, Vol.16, 2000, pp 277-
294.

[5] T.L. De Fazio, A prototype of feature-based design
for assembly, In: Ravani B, editor, ASME Advances
in Design Automation, Chicago, IL, USA, 1990, pp
9-16.

[6] K. Lee, G. Andrews, Inference of positions of
components in an assembly: part 2, Computer-
aided Design, Vol.17, No. 1, 1985, pp 20-24.

[7] R. Sodhi, J.U. Turner, Representing tolerance and
assembly information in a feature-based design
environment, In: Gabriele GA, editor, Proceedings
ofthe ASME Design Automation Conference, vol.
DE-vol. 32-1, Miami, Florida, USA, 1991, pp 101-
108.

[8] J.J Shah, R. Tadepalli, Feature based assembly
modeling, In:Gabriele GA, editor, Proceedings of
the ASME International Computers in Engineering
Conference, vol. 1, San Francisco, California, USA,
1992, pp 253-60.

[9] N. Shyamsundar, R. Gadh, Internet-enabled
collaborative product design with assembly features
and virtual design space, Computer-Aided Design,
Vol.33, 2001, pp 637-651.

[10] L. Chen, Z. Song, L. Feng, Internet-enabled real-
time collaborative assembly modeling via an e-
assembly system: status and promise, Computer-
aided Design (in press).

[11] R. Bidarra, N. Kranendonk, A. Noort and W.F.
Bronsvoort, A collaborative framework for
integrated part and assembly modeling, In:
Proceedings of Solid Modeling '02 - Seventh
Symposium on Solid Modeling and Applications,
17-21 June, ACM Press, NY, 2002, pp 389-400.

[12] A. Noort, GFM Hoek and W.F, Bronsvoort,
Integrating part and assembly modeling, Computer-
aided Design, Vol.34, No. 12, 2002, pp 899-912.

[13] M. Toshiki and R.M. Cutkosky, Agent-based
collaborative design of parts in assembly,
Proceedings of the DETC’98, ASME Design
Engineering Technical Conference, September 13-
16, 1998, Atlanta, Georgia, USA.

[14] http://www.w3.org/xml

[15] http://www.opencascade.com/products/

