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ABSTRACT 

 

Today’s product development practices occur as ad-hoc fragmented value chains across distributed 

environments. They increasingly require distributed collaborative design capabilities for companies 

to cooperatively design products to be competitive. There are thus specific middleware 

mechanisms and capabilities needed to appropriately distribute functionality and data across the 

network in a complex heterogeneous computing landscape. These are part of the fundamental 

problems of concurrency and synchronization at various system and support levels. This paper 

addresses one aspect of the design synchronization problem in digital product modeling and 

associated design changes due to shape editing to provide timely support in distributed 

collaborative design. This involves exploiting the geometric/model compression technique for 

effective visualization and interaction. 
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1. INTRODUCTION 

Collaborative engineering is a key concern in the global 

engineering economy. It requires a concerted and 

continuous combination of product design, management 

and planning, and realization activities amongst 

dispersed participants who need to engage early and 

frequently to work on what-if scenarios amidst different 

engineering domains, disciplines and perspectives with 

the associated processes and resources.  

 

This means accessing and using complex, large remote 

design models and associated datasets and interacting 

with customers, stylists, suppliers, and domain experts. 

Each of these groups of people uses different 

heterogeneous tools to manipulate and evaluate 

changing product models. Suitable computing 

infrastructures and associated technologies involving 

tools and applications are required given the decisive 

development and potential of the Internet as a 

collaboration medium in a heterogeneous hardware and 

software landscape. These are termed as middleware 

[12] [18]. Involved with this are challenging problems 

relating to inter-operability, appropriate product and 

information models and their distribution, and efficient 

quality communication, all attributable to complete 

design synchronization support [13][23]. 

 

More specifically, the design cycle of complex products 

has come to rely on upon very complex and repetitive 

flows of information between the various design groups 

across varying distributed environments. This often 

reflects resolving conflicts through such cycles as teams 

progressively refine constraints. These activities are full 

of references to the product features (e.g., shape and 

position of features, manufacturing and maintenance 

processes, etc.) and are thus difficult to carry out via 

electronic mail, voice mail, or telephone conversations 

with consistency.  

 

Early and rapid design change in ad-hoc collaboration is 

thus always occurring and requiring timely 

communication and updates to dispersed participants in 

the product model context in as seamless and as generic 

as possible way. We note that such collaborations are 

essentially networks. 

 

According to Wang [23], when a product is designed 

through the joint and collective efforts of many 

designers, the design process may be called 

collaborative design (it may also be called co-operative 
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design, concurrent design and inter-disciplinary or even 

integrated design, though each term may introduce 

differentiation in technical requirements and objectives). 

This may include functions as disparate as design, 

manufacturing, assembly, test, quality and even 

purchasing from suppliers and customers.  

 

More technically, collaborative systems can be generally 

defined as distributed multiple user systems that are both 

concurrent and synchronized [2]. Concurrency involves 

management of different processes trying to 

simultaneously access and manipulate the same data. 

Synchronization involves propagating evolving data 

among users of a distributed application, in order to 

keep their data consistent. 

 

These concepts are generally rather demanding, their 

difficulty becomes particularly apparent within a 

collaborative design modeling framework, where the 

amount of model data that has to be synchronized is 

typically very large, and the concurrent modeling actions 

taking place may be very complex. 

 

Specifically, to leverage the Internet, various domain-

specific middleware capabilities are required in 

association with the appropriate formulation of 

distributed functionality and data architecturally 

speaking. As well, we note that there are several fallacies 

associated with networks such as network reliability, zero 

latency, limitless bandwidth, network security, and fixed 

network topologies. Such fallacies affect the problem of 

distributed collaborative design and provide valid 

consideration in providing the middleware capabilities 

and support. In particular, with design synchronization, 

large 3D models and datasets for visualization and 

interaction must be dealt with in terms of latency and 

bandwidth. 

 

In Section 2, several collaborative design systems in 

research are reviewed. In Section 3, the proposed 

system architecture is briefly discussed as a framework. 

We refer to our past and present efforts in this area of 

providing for distributed collaborative design [6-9]. In 

particular, we have also indicated some related research 

involving downstream design synchronization in an 

Integrated Product and Process Design (IPPD) context, 

exemplified with fixture planning with some overlapping 

information [9].  This leads to Section 4 as a problem 

overview in this paper context and several 

considerations supporting the leverage of the model 

compression technique to provide ‘end-to-end’ 

capability supporting design synchronization in our 

research approach. Some results are presented in 

Section 5 followed by Section 6 on conclusions. 

 

2. COLLABORATIVE DESIGN SYSTEMS 

SURVEY 

Several approaches were developed in creating an 

integrated environment or frameworks for product and 

process design based on traditional standalone systems. 

One approach is the use of standard file formats such as 

STEP and IGES for CAD models located at central 

databases. Roy [20] proposed a Web-based 

collaborative design framework for the use of a translator 

to convert CAD models into VRML based models which 

can then be viewed over the WWW onto such 

standalone systems. The VRML models are stored in an 

existing product data repository. The translator resides 

on a main central server and can be accessed remotely 

by a designer. Most of such frameworks including [15, 

10] are regarded as under proof-of-concept development 

stage [23].  

 

One drawback in the use of standard file formats is that 

the approach provides a static (rigid) interface to 

applications [8]. It is also important to note that although 

VRML is treated as a neutral representation, it in itself is 

not a geometric model and can only be used to display 

geometric models with no editing capability [23]. We 

also wish to note that like HTML for 2D web page layout 

and display for publishing, VRML is the equivalent of 3D 

display or multimedia publishing. It is also not an 

appropriate method for product model and data 

representation. Technically it also mirrors a static scene 

graph approach which is not very efficient and 

cumbersome in the realm of design changes. In 

summary, these are drawbacks to synchronization. 

 

For more relevant means to design synchronization, we 

note the efforts of Hoffman [9] with their net shape 

association to monitor design changes. Our work [15] is 

similar with more detail reported therein. Notable is the 

role of the server-based cellular model coupled with 

semantic feature modeling and feature conversion for 

design synchronization, as report by de Kraker [5] and 

led by Bronsvoort. Related is the extension work on the 

Internet, WebSPIFF, carried out by Bidarra [2]. We note 

that design synchronization on an ‘end to end’ principle 

that is from server to client has not been discussed 

elsewhere in the distributed and collaborative design to 

the best of our knowledge. In particular, the role of 

interactive 3D facet models integral to design changes 

effected from a geometric modeling server is not 

exploited. We use the next 2 sections to introduce 

architectural considerations to formulate distributed 

functionality and associated data for supporting 

synchronization. 
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3. DISTRIBUTED DESIGN ARCHITECTURE 

The requirements in a distributed and collaborative 

design context lead almost inevitably to the adoption of 

a client-server or more generally distributed computing 

architecture, in which the server provides the participants 

in a collaborative design session with the indispensable 

communication, coordination and data consistency tools, 

in addition to the necessary basic modeling facilities.  

 

A recurrent problem in client-server systems lies in the 

conflict between limiting the complexity of the client 

application and minimizing the network load. In a 

collaborative design context, client complexity is mainly 

determined by the type of modeling and interactive 

facilities implemented at the client, whereas network load 

is mainly a function of the kind and size of the model 

data being transferred to/from the clients [5]. Thus, 

unless special or specific measures are introduced, the 

abovementioned conflict cannot be optimally balanced 

or compromised. We note that either extreme of so-

called thin clients and fat clients, respectively presents the 

problem of heavy network traffic for unintelligent image 

rendering, and that of massive data inconsistencies. The 

former is not a novel approach and the latter is too close 

to the condition of standalone systems. Both pose 

extreme synchronization issues without attempting to 

provide appropriate middleware capabilities. 

 

In conclusion, the principle for a good compromise to 

such difficulties is a client-server approach, where the 

server coordinates the collaborative session, maintains a 

shared model and repository, and provides all 

functionality that cannot, or should not, be implemented 

on the client. The clients then perform operations locally 

as much as possible, and only high level semantic 

messages, and limited amounts of information necessary 

for updating the client, will be sent over the network. 

This keeps the network load relatively low, while 

guaranteeing good client interactivity at acceptable 

response times. An important advantage of this 

architecture is there is only one product model in the 

system. Clients send their modeling operations to the 

server, and receive feedback after any such operation 

has been performed on its central feature model, 

avoiding inconsistency between multiple versions of the 

same model. 

Figures 1, 2 and 3 illustrate the general consideration of 

a product data centric architecture, a system architecture 

and framework to support distributed collaborative 

design and the ‘network stack’ of middleware layers. We 

note that design changes should now be seen to 

generate and drive the essential functionality and data in 

distributed collaborative design with the corresponding 

need to handle large complex sets of models and data. 

Such design changes occur in distributed environments 

involve different users and heterogeneous tools and 

formats. 

 

 
 

Figure 2: Overall System Architecture 

 

 

 
 

Figure 3: Middleware Perspective and Layers 

 

Accordingly by middleware design, we have developed 

suitable and reusable Java classes and interfaces. More 

 

Figure 1: Product Model-Centric Characteristics 
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information can be found in [14-15], [17], [22]. By 

functionality and data considerations, this approach 

accounts for the problems of compatibility and inter-

operability so that we may develop an extensible 

computing environment supporting seamless integration. 

This refers to the Java-based geometric kernel modeling 

interface, the use of Extensible Markup Language (XML) 

to model and represent an augmented product data 

representation, and on the client side, the interfaces for 

extension into a modeler independent association 

relationship management capability to help propagate 

design changes and maintain domain-specific 

application view consistency, similar to [9] and discussed 

in [15] to achieve adaptive process responses and 

solutions. 

In the context of this paper, we would like to deliberate 

on the ‘end-to-end’ requirement for design 

synchronization given the augmented product data XML 

representation conceived and used in exchange between 

server and client. We note now that interactive graphics 

or facet models for visualization are crucial in a 

distributed design situation for this synchronization.  

 

4. MODEL COMPRESSION FOR DESIGN 

SYNCHRONIZATION 

In this section, we review computer graphics 

simplification techniques and evaluate relevant issues 

related to distributed collaborative design. We then 

arrive at the choice and leverage of the model 

compression algorithm for integration to support ‘end-to-

end’ design synchronization.  

 

Interactive 3D computer graphics play an important role 

in human-computer interaction in design and 

manufacturing, amongst many other areas. In many of 

these applications and a general context, human 

productivity or satisfaction would be significantly 

enhanced by the possibility of immediate or rapid access 

to remotely located 3D data sets for visual inspection or 

manipulation.  

 

3D computer graphics are dominated by polygonal or 

facet models due to their mathematical simplicity. This 

results in simple and effective rendering algorithms which 

embed well in computer hardware leading to widely 

available graphics accelerators. The number and 

complexity, measured by the number of facets and 

vertices, of these 3D models and data sets is growing 

rapidly, due to improved design and model acquisition 

tools. This growth seems to be faster than the ability of 

graphics accelerators to render them interactively. As 

well, anticipated increases in phone and network 

bandwidth will not, by themselves, suffice to offset the 

explosion of complex 3D models. This observation is 

applicable to design and manufacturing as products have 

grown in complexity and given the need to carry out 

distributed collaborative design. Thus there is always a 

need for product models as parts and assemblies to be 

viewed and edited interactively. This has created the 

need for polygonal simplification techniques [4]. 

 

Briefly, these methods can simplify the polygonal 

geometry of small, distant, or otherwise unimportant 

redundant portions of the model, seeking to reduce the 

rendering cost without a significant loss in visual content 

such as in flight simulation. Alternatively, they can 

reduce model complexity without introducing geometric 

error such as in volumetric information stemming from 

medical imaging useful for surgical simulation. In the 

case of complex engineering analysis and simulation 

problems that require a model to go through subdivision 

or partitioning, simplification is employed to remove 

unnecessary geometry. If the problem is to improve 

runtime performance in visualization by simplifying the 

polygonal scene being rendered, the most common use 

of polygonal simplification is to generate levels of detail 

(LODs) of the objects in a scene [12]. By representing 

distant objects with a lower LOD and nearby objects with 

a higher LOD, applications from video games to CAD 

visualization packages can accelerate rendering and 

increase interactivity. In the latter case, this would be 

evident in a factory simulation situation involving spatial 

factory design and planning where losses in geometric 

accuracy and detail can be tolerated. 

 

However, in the context of distributed collaborative 

design, we have noted that frequent design changes and 

updates need to occur across distributed environments. 

From the perspective of synchronization, simplification 

techniques involving time consuming preprocessing 

efforts to generate multiple LODs would not be suitable 

as multiple time-consuming updates are incurred in 

distributed collaborative design, even though this is has 

been termed as progressive transmission or streaming 

[7]. LODs also severely compromise the geometric and 

visual fidelity required in design and would not be 

advisable especially when co-design involving distributed 

teams members take place.  

 

In addition, simplification techniques that drastically 

allow for topology modification, compromise or loss [6, 

21] are also inappropriate in distributed collaborative 

design as this would also create misunderstanding of the 

original topology in the B-rep model. The CAD model 

for a product design would become grossly 

misinterpreted when design features are ‘lost’ during 

communication. We also note that unlike say flight or 

factory simulation, collaborative design requires more 

static or passive as opposed to dynamic scene model 

viewpoints.   



 335 

 

Nevertheless we should indicate that LODs have been a 

key aspect in the design specification of the Virtual 

Reality Markup Language (VRML) standard and other 

programmatic scene graph techniques for visualization. 

Their original context being more related to multimedia 

uses would be inappropriate for distributed collaborative 

design involving complete descriptions and 

augmentation issues such as design intent and product-

process modeling. 

 

With the consideration and requirement for integration, 

distributed collaborative design capabilities in distributed 

environments require an approach to leveraging a 

simplification algorithm that is transmission or bandwidth 

friendly, can avoid losses or compromises as mentioned 

above and is able to accommodate product model 

representations and design changes. We thus require a 

simplification algorithm known as model or geometry 

compression that in general can take original highly 

detailed and complex models and reduce its size to a 

bandwidth-acceptable level of complexity without 

compromising visual and topology fidelity.  

 

In general, combining different simplification techniques 

can still be relevant in the context of product assembly 

modeling and manipulation. This is because we can 

consider parts in a product assembly as either ‘passive’ 

or ‘active’; the former not being contextually subject to 

design changes or shape editing – thus allowing 

compromises in fidelity, and conversely the latter, as is 

our present problem definition. If therefore there are 

large product assembly models to be handled, for say 

assembly simulation, the role of LODs for example might 

be useful. 

 

Much of the work done in model or geometry 

compression is based on clever encoding of the 

topological relationship between nodes in the meshes. 

These encodings minimize the repeated references to 

nodes, thereby achieving a compact description of 

topology. An interesting observation made in meshes 

representing manifolds is that, on an average, the 

number of triangles is twice the number of vertices and 

each vertex is referenced in 5 to 7 triangles. Hence, a lot 

of research has concentrated on aggressive attack on the 

problem of encoding of topological relationship between 

vertices. 

 

Early examples of compact encoding of a mesh were 

seen in triangle rendering engines such as OpenGL, in 

the form of triangle-strips and triangle-fans. A lot of 

research has been carried out in generating maximal 

triangle-strip decomposition of given meshes, minimizing 

the repetitions in the references to vertices. For our 

purpose, we note that Rossignac’s work on the 

Edgebreaker algorithm achieves even greater 

compression by compact representation of topological 

relationship between vertices of a mesh [19]. 

 

The choice is made of model or geometric compression, 

that is basically loss-less and capable of high 

compression ratios, is relevant to the bandwidth and 

transmission constraints of the Internet as a shared 

resource and expedient to the need for synchronization 

for timely updates. To do that, it is proposed that the 

model compression algorithm should be integrated in a 

middleware framework for distributed collaborative 

design that may also support incremental design change. 

More specifically, integrated model compression across 

distributed environments requires incremental 

compression on the server side, followed by transmission 

and decompression into our augmented product data 

XML representations for use on the client end user side. 

To the best of our knowledge, this aspect has not been 

reported elsewhere in the distributed collaborative design 

context.  

 

5. RESULTS & DISCUSSIONS 

The Edgebreaker algorithm was mainly developed in the 

context of visualization of complete 3D models 

independent of the origin of those models [11]. Thus the 

compressed data format does not contain modeling 

information such as face tags and B-rep topological 

information that are useful as augmentation for product 

data representation and integral portrayal with the 

modeling kernel to effect distributed and collaborative 

design. The initial augmented product data approach 

using XML that was conceived has been necessary and 

sufficient enough to demonstrate the feasibility of 

Internet-enabled Fixture Design [22]. Design change and 

synchronization were not accounted for. 

 

This approach, without the leverage of model 

compression and augmentation for distributed design, is 

similar to Hoffman although he had used the term 

‘characteristic point’ and the concept of ‘geometry 

certificates’ in the Master model repository context as an 

abstraction from the geometric server.  

 

We have integrated the Edgebreaker compression 

algorithm into our architecture. We have also modified 

the initial augmented Product Data representation’s XML 

schema (Figure 4). The sequence of computing events 

for arriving at the Product Data XML Schema for 

complete models is shown in Figure 5. In general, such 

augmented information is important for engineering 

collaboration as clients interact with the modeling kernel 

and can also easily visualize, interrogate and interact on 

the client side. In a more advanced and relevant context, 
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we note the value of semantic feature modeling [1] and 

its complement to our middleware oriented approach 

noting also that facets are standard descriptions with no 

compatibility issues. As facet models are characteristic of 

engineering and product models and need to be kept as 

a repository, it would be advisable to employ such 

compression methods to these repositories.  

 

In this sequence of events, when a modeling operation is 

carried out, a tessellated mesh of the model is created by 

invoking a function call on Parasolid. The mesh data 

from Parasolid is then formatted as required for the 

Edgebreaker algorithm to work. The data required for 

Edgebreaker are the number of vertices, the coordinates 

of the vertices, the number of triangles and the indices of 

the vertices that belong to each triangle.  

The coupling of ‘model compressed’ data with the 

augmented product data representation is logical and 

obvious given that design changes cause changes to the 

boundary representation and as such boundary and 

topological information extracted in such changes would 

have been transmitted across to the client side. The 

essential difference is the re-organization and 

compression format introduced into the augmented 

product data XML representation whilst respecting their 

linkage with the boundary information. With design 

changes caused by shape editing, this new schema will 

also allow for concurrent changes in both B-rep 

topological information and model compressed data. 

  

We have verified the effectiveness of the Edgebreaker 

algorithm in reducing the data required for visualizing a 

3D model by comparing the sizes of the augmented 

product data XML files with compressed geometry 

format and uncompressed mesh data. The results of our 

experiments are presented in Tables 1 and 2 for some 

basic primitive models and complex realistic product 

models (Figures 6 and 7). The experimental results show 

a significant compression of the data required, validating 

the effectiveness of using the Edgebreaker algorithm for 

model compression in reducing data sizes (Table 1). 

Initial timing tests to compare the visualization taken for 

without compression as in the prior system, and with 

compression with Edgebreaker incorporated are shown 

in Table 2. We note that this is for complete model 

compression, rather than for design changes. As well, 

these have not taken place in a networked context 

though caution should be applied to the consideration 

that the Internet has always been a shared traffic 

‘highway’ of resources, one essential characteristic of 

collaboration. Adequate predictable performance would 

really relate to the concept and practice of ‘Quality of 

Service’ (QOS), an important research concern in 

network research. Still, it is clear that when no special 

measures are undertaken in this regard, the viability of 

distributed and collaborative design would be less, just as 

in the same regard, research on graphics simplification 

and compression. 

 
Visualization Time Model 

Type IFD (secs) JEdgebreaker (secs) 

Percentage 

Difference (%) 

Cube 1.74 1.74 0.0 

Prism 1.49 1.49 0.0 

Sphere 6.73 3.53 47.5 

Torus 13.07 4.00 70.0 

Table 2: Timing tests for visualization 

File Size 
Model 

Type 
Before 

Compression 

After 

Compression 

Compression 

Ratio 

Cube 5KB 1KB 5 

Prism 7KB 2KB 3.5  

Sphere  178KB 31KB 5.74  

Torus 379KB 66KB 5.74  

Chuck 492KB 79KB 6.23 

Flange 137KB 39KB 3.5 

Table 1: Size reduction tests with model compression 

 

Figure 5: Basic integration and sequence of creating the 

augmented product data schema. 

Compressed 

Geometry 

Faces 

Document 

Body Body Tag 

• SeedCorner 

• CLERS 

• Corners 

• FaceTag 

• FaceType 

• Triangles 

Figure 4: Revised Product data schema incorporating 

compressed geometry 
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Figure 7: Flange. 

Figure 6: Chuck. 

 

 

 

6. CONCLUSIONS 

In today’s context of investigating the Internet as a 

medium for distributed collaborative design, the primary 

concern for seamless integration require a middleware 

oriented environment and architecture to address a 

number of issues. These cover compatibility, inter-

operability, reusability and extensibility, and techniques 

on design synchronization and concurrency in general.  

 

In this paper, we explain how in the formulation of 

distributed functionality and data, there is a need to 

handle 3D data sets inherent in the visualization and 

interaction of product models to account for timely 

updates and exchanges in the use of network 

bandwidths on the Internet. This resulted in the choice 

and testing of the geometric or model compression 

algorithm. We note the need to develop integrated 

incremental compression to support design changes. In 

an overall arrangement for effecting synchronization, we 

should note that timely updates may require a 

distributed coordination mechanism to ensure that 

relevant dispersed servers and clients are operating in a 

lock-step fashion.  
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