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ABSTRACT 

 

The role of computers and of computer-aided design tools for the creation geometrical shapes that 

will be judged primarily by aesthetic considerations is reviewed. Examples are the procedural 

generation of abstract geometrical sculpture or the shape optimization of constraint curves and 

surfaces with some global “cost” functional. Different possibilities for such “beauty functionals” are 

discussed. Moreover, rapid prototyping tools based on layered manufacturing now add a new 

dimension to the visualization of emerging designs. Finally, true interactivity of the CAD tools 

allows a more effective exploration of larger parts of the design space and can thereby result in an 

actual amplification of the creative process. 
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1 INTRODUCTION 

In this tutorial, we are concerned with computer-aided 

design tasks in which the final evaluation is mostly based 

on aesthetic criteria. While most engineers accept the fact 

that one needs to use computers to design jet engines, 

computer chips, or large institutional buildings, it is less 

clear whether computers are also useful in the design of 

artifacts that are judged mostly by their looks. In a 

traditional CAD setting, the computer primarily serves as 

a precise drafting and visualization tool, permitting the 

designer to view the emerging geometry from different 

angles and in different projections. A digital 

representation also makes it possible to carry out some 

analytical tasks such as determining volume or surface 

area of a part.  

We will show that today the role of the computer 

goes much further. It actively supports the creation of 

geometric shapes by procedural means and can even 

optimize a surface by maximizing some “beauty 

functional.” It further can help to generalize visualization 

aids for complex parts through the generation of rapid 

prototypes on layered manufacturing machines. Finally, 

it may even amplify the creative process itself by 

allowing the designer to quickly explore a much larger 

space of design alternatives.  

The objects used as examples in this tutorial are 

mostly abstract geometrical sculptural forms or 

mathematical visualization models (Fig.1). However, the 

principles and techniques discussed are readily 

applicable also to consumer products, or automotive 

parts and shapes. Creating maximally satisfactory forms 

for mathematical models or for geometric sculptures 

poses quite different requirements and constraints for 

any CAD tool than developing an optimized airplane 

wing or designing the most powerful computer chip. 

Real-time interactivity becomes a crucial factor, when a 

designer's eye is the key evaluation module in the design 

loop.  

 

   

Fig. 1.   Geometrical sculptures: (a) Volution_5, (b) Altamont. 

 This tutorial overview starts by looking at some 

generic tasks in curve and surface design, in particular, 

the efforts for defining a “beauty functional” for 

procedurally optimizing shapes that are only partially 
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constrained by the designer, as well as for efficient 

implementations and approximations of such 

optimization functionals so that they can be used at 

interactive design speeds. Next, we look a parameterized 

design paradigm that allows a designer to rapidly explore 

and compare many alternative versions of a design. 

Finally, we make the point that a CAD tool that is well 

matched to the task at hand is much more than just a 

“drafting assistant” and can indeed become an amplifier 

for one's creative spark. 

2 OPTIMIZATION OF SMOOTH SURFACES  

Smooth surfaces play an important role in engineering 

and are a main application for many industrial CAD 

tools. Some surfaces are defined almost entirely by their 

functions; examples are ship hulls and airplane wings. 

Other surfaces combine a mixture of functional and 

aesthetic concerns, e.g. car bodies, coffee cups, flower 

vases… In other cases, aesthetics dominates the 

designer’s concern, for instance in abstract geometric 

sculpture. 

For either situation, it can be argued that an ideal 

surface design system should allow a designer to specify 

all the boundary conditions and constraints and then 

provide the “best” surface under these circumstances. 

“Best” in the context of this tutorial would mean an 

optimization with respect to some intrinsic surface quality 

related to its aesthetic appeal. To be usable in a CAD 

tool, that quality has to be expressible in a functional or 

procedural form. Commonly, the characteristics 

associated with “beautiful” or “fair” surfaces imply 

smoothness - at least tangent-plane (G1-) continuity, but 

often also curvature (G2-) continuity. If the surface is 

covered with some textural pattern, then we have to 

demand more than just geometric continuity and also 

require parametric continuity, i.e., C1- or C2-continuity, 

respectively. Additional characteristics often cited in the 

definition of beautiful shapes are symmetry and 

simplicity. The first implies that symmetrical constraints 

should result in symmetrical solutions; and the second 

implies avoidance of unnecessary undulations or ripples. 

All these properties are exhibited by minimal 
surfaces, i.e., by the shapes assumed by thin soap 
membranes spanning some given boundary (as long as 

the air pressure on both sides is the same). 

Experimentally, such shapes can be generated by 

dipping a warped wire loop into a soap solution. The 

lateral molecular membrane-forces will try to minimize 

overall surface area and thereby implicitly create a 

minimal saddle surface in which the mean curvature at 

every point of the surface assumes the value zero. 

021 =+⇒ κκfaceMinimalSur                   (1) 

A generalization of such shapes that extends to 

closed surfaces can be obtained by minimizing the total 

bending energy of the surface. In an abstraction and 

idealization that goes back to Bernoulli, the local bending 

energy of a thin filament or a thin sheet of stiff material is 

proportional to the square of the local curvature. The 

total bending energy of a shape then can be obtained as 

an arc-length or area integral of curvature squared over 

the whole shape. 

min
2 =⇒ ∫ dArgySurfaceMinimumEne κ              (2) 

For closed surfaces, it turns out that minimizing 

bending energy is equivalent to minimizing mean 

curvature, since the area integral of Gaussian curvature 

is a topological constant that depends only on the genus 

of the surface. This energy functional is also known as 

Willmore energy [5], and the possible minimal-energy 

shapes for surfaces of different genus are well known [5]. 

For surfaces of genus 0, the minimal shape is, of course, 

a sphere, and it has a total bending energy of 4π 
regardless of its size, since the bending energy functional 

happens to be scale-invariant. For genus 1, bending 

energy is minimized in the Clifford torus in which the 

ratio of the two defining radii is equal to 2 . And for 

surfaces of higher genus, the energy minimizing shape is 

the Lawson surface. With increasing genus, this surface 

ever more closely approximates two intersecting spheres 

with a regular circle of tiny pillars and holes at their 

intersection line, reminiscent of the central portion in 

Scherk’s second minimal surface [7] wrapped into a 

toroidal ring. The total Willmore energy for all these 

surfaces always lies below a value of 8π. 
It has been argued [6] that bending energy may not 

be the best “beauty functional.” For most people, a 

Lawson surface of genus 8 is not clearly the preferred 

shape with 8 handles or 8 tunnels. Also, if the perfect 

genus-0 shape is indeed a sphere, shouldn't the 

“penalty” (energy) function of that shape assume the 

value 0? Thus we might obtain a better functional to 

evaluate the fairness of a curve or surface, if we try to 

minimize the integral over the ‘change of curvature’ 
squared. Moreton has created a first implementation of 

such a functional by integrating the squares of the 

derivatives of the principal curvatures in the directions of 

their respective principal directions [6]. 
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In surfaces where the principal lines of curvature are 

exact circles, this minimum variation (MV) functional 
evaluates to zero. Thus all cyclides (spheres, cylinders, 
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cones, tori, and even horned tori) are “perfect” surfaces 

of minimal MVS cost. 

The challenge now exists to implement the 

evaluation of these cost functionals so that surfaces can 

be optimized at interactive rates. The first system to 

create minimum-variation surfaces (MVS) used biquintic 
quadrilateral Bezier patches stitched together so as to 

form the desired shapes [6]. All the degrees of freedom 

contained in the coordinates of the control points that 

were not specified by design constraints were then varied 

with the goal to minimize the overall cost function. The 

gradient components of all the available degrees of 

freedom were determined with finite differences, and a 

conjugate gradient descent method was used to move 

the system towards a local optimum. The area integral 

over the change of curvature was evaluated by Gauss-

Legendre or by Lobatto quadrature, typically using 

about 400 sample points per Bézier patch. Penalty 

functions using Lagrange multipliers were employed in 

an inner optimization loop to enforce G1- and G2-

continuity across the seams between adjacent patches. 

The system was very slow, using many hours for 

converging on even simple symmetrical shapes; but it 

produced beautiful results [6]. 

2.1 Interactive Surface Optimization 

Now, a decade later, what are the prospects for 

evaluating such functionals at the desired, almost 

instantaneous and truly interactive rate?  

First, of course, computer power has increased by 

one to two orders of magnitude over the last decade, 

thus bringing us closer to our goal of full interactivity, 

even without any further innovations. 

Second, and most importantly, subdivision surfaces 

have become mature and popular. They allow us to 

obtain surfaces with a reasonable degree of built-in 

continuity by their inherent construction, thus avoiding 

the very costly inner optimization loops that were used 

originally to guarantee smoothness at the seams. For 

instance, Catmull-Clark subdivision surfaces can offer 

G1-continuity everywhere and exhibit C2-continuity 

almost everywhere, except at extraordinary points where 

quadrilateral patches join with a valence different from 4. 

Third, the inherently hierarchical organization of 

subdivision surfaces gives us the possibility to optimize 

the gross shape of the surface at a relatively coarse level, 

where only a small number of control points have to be 

adjusted. Then as we gradually refine the surface by 

increasing the level of subdivision, the number of 

degrees of freedom grows quadratic; but since the 

surface is already relatively close to the desired shape, 

the optimization procedure need not run for many 

iterations until convergence is achieved.  

Fourth, at the research frontier, experiments are now 

going on to find ways to avoid the expensive numerical 

integration steps in the inner loop of the optimization. 

The aim is to find a discretized approximation of the 

salient surface characteristics, to obtain directly an 

estimate of the behavior of the cost functional that is 

good enough to guide the gradient descent optimization 

in the right direction. 

 

2.2 The New Framework 

As our basic framework, we use subdivision surfaces 

to represent the shapes to be optimized. Using finite 

differences based on incremental movements of the 

control vertices, a gradient vector for the chosen 

cost/energy functional is obtained and then used to 

evolve the surface iteratively towards a local cost 

minimum. After obtaining the minimum energy surface 

for a given mesh resolution, the mesh is subdivided to 

produce new vertices and therefore new parameters for 

optimization. In this general approach, we can vary the 

methods for calculating the actual optimization moves, 

trading off accuracy for speed. 

 

2.3 Approximating the Cost Functional 

A first simplification calculates an approximate cost 

functional directly from the discrete mesh of control 

points of the subdivision surface, as is done, for instance, 

in [3]. We have used vertex-based and edge-based 

functionals that express the surface energy as a 

summation over the local energy at all vertices or edges, 

using polynomial expressions of vertex coordinates 

and/or dihedral angles along the edges. These discretized 

functionals are adequate to guide the gradient descent 

process in the same direction as a more exact functional 

evaluation would, but do so at significantly reduced cost 

and thus with higher speed. For various test cases, 

ranging from spheres to more complex surfaces of genus 

3, we have compared the shapes (Fig.2a) obtained with 

the discretized functional in mere minutes to the 

previously calculated benchmark shapes, and we found 

the results to be in very good geometric agreement. 

 

   

 
Fig. 2. Genus 3 surfaces: (a) obtained by minimizing a 

discretized bending energy, and (b) by approximating minimum 

curvature variation with a direct vertex-move calculation. 
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2.4 Direct Vertex Move Calculations 

The second simplification avoids the gradient calculation 

based on finite differences. Instead we calculate directly 

the moves for the control vertices that will optimize the 

surface in the desired direction. In particular, we have 

developed a vertex-move procedure that aims to 

minimize the variation of curvature as attempted by [6]. 

For this purpose, we calculate for each edge in the 

control mesh a change in normal curvature in the 
direction of the edge, and then aim to move the vertices 

along their averaged vertex normals so as to reduce this 

curvature variation. Each vertex obtains a suggested 

move component from every edge attached to it, and it 

is then moved proportional to the mean of these 

components. Figure 2b shows a surface obtained by this 

direct method; the shape is very close to the shape found 

in 1992 after many hours of computation [6], but now it 

can be generated in just a few seconds! 

With this speedup resulting from the use of discrete 

functionals and direct vertex-move calculations, we can 

envision a CAD system in the not-too-distant future, 

where the designer specifies boundary conditions and 

constraints, and then picks one of several cost functionals 

for a quick optimization of the surface. The designer may 

then compare and contrast the results of two or three 

different aesthetic functionals and choose the one that is 

most appropriate for the given application domain. 

 

3 FAIR CURVES ON FAIR SURFACES 

A second key CAD problem is the embedding of 

“beautiful” smooth curves in the optimized surfaces 

discussed above. Often one needs to draw a fair 

connecting line between two points on a smooth surface. 

The most direct such connection is a geodesic line. While 

it is easy to trace a uni-directional geodesic ray on a 

smooth surface or on a finely tessellated polyhedral 

approximation thereof, it is a well-known hard problem 

to connect two points with the shortest geodesic path on 

a surface that exhibits many areas of positive and 

negative mean curvature. 

Sometimes the geodesic line segment is too 

restrictive for design purposes; it offers no degrees of 

freedom or adjustable parameters to the designer. This 

limitation is particularly detrimental when multiple lines 

must radiate from the same point. In this situation a 

designer would like to have some control over the initial 

tangent directions of these lines, perhaps to distribute 

them at equal angles around the point from which they 

emerge. For this purpose, a good alternative is a line for 

which its geodesic curvature is either constant or varies 

linearly as a function of arc length. Such LVC-curves 

offer the designer two parameters: the values of geodesic 

curvature at either end of the line segment. These can 

then be used to set the tangent directions at the two end-

points (similar to the controls available in a Bézier curve 

in the plane). We have developed a scheme to efficiently 

calculate a good approximation to such LVC-curves on 

subdivision surfaces. 

We will illustrate the use of this technique with an 

example from mathematical topology concerning a 

crossing-free embedding of a graph on a surface of a 

suitably high genus. E.g., K12, the complete (fully 

connected) graph of 12 nodes, requires a genus-6 

surface for an embedding with no crossings, and the 66 

edges of this graph will then divide the surface into 44 3-

sided regions. To make pleasing-looking, easy-to-

understand models of this partitioned surface, we want 

to make all edges as “fair” as possible, i.e., keep them 

nice and smooth with no unnecessary undulations. At 

the same time we would like to have the edges more or 

less evenly distributed around the nodes where they join. 

LVC-curves offer just the right amount of control for our 

purpose.  

 

3.1 Our Approach 

The designer starts by constructing a coarse polyhedral 

model of the needed genus-6 surface as shown in Figure 

3a. Choosing oriented tetrahedral symmetry for this 

surface and exploiting this symmetry to the fullest, the 

user only has to construct 1/12 of the surface, which can 

easily be done with 9 quadrilaterals or 18 triangles. The 

complete surface is then constructed by composing 

twelve copies of this fundamental domain with suitable 

rotations. On this surface, the user now places the nodes 

of the graph and draws piecewise linear connections 

between them. If the graph also is given the same 

tetrahedral symmetry, then this work needs be done only 

on the fundamental domain, i.e. on 1/12th of the 

surface. 

Our algorithm starts from this linear model. The 

triangle or quad mesh is the basis of a Loop or Catmull-

Clark subdivision surface, and the piecewise linear paths 

between nodes will be converted into LVC-curve 

segments. The two refinement processes occur in 

parallel. For each generation of the subdivision process, 

the piecewise linear paths are modified so as to 

approximate a curve with linearly varying curvature 

(LVC). 
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Fig. 3.  (a) Initial piecewise linear paths on polyhedral model.  

(b) Final optimized LVC curves on subdivision surface. 

Towards this goal, the vertices where the paths cross 

over the edges of the control mesh (Fig. 4) are moved 

with a gradient descent method to approach the desired 

LVC-behavior. Specifically, each such vertex is moved 

along the edge on which it lies so as to drive a discretized 

estimate of geodesic curvature at that point towards the 

mean of the geodesic curvature values at the two 

neighboring points on that path. A few dozen iterations 

of this optimization step are typically sufficient. After this 

curve optimization process has converged, the surface is 

subjected to another subdivision step. All linear path 

segments across all facets in the mesh are then split at 

the new subdivision edges, and all the path vertices are 

subjected again to the curve optimization process. This 

general process loop is repeated until the desired degree 

of refinement has been reached. The technique works 

with many popular subdivision schemes. 

 

 

Fig. 4.   Optimizing a discretized LVC curve linking S and T; 

 the original path is the one with only three segments. 

3.2 Results 

The result of this process for the embedding of the K12 

graph on a genus-6 surface of tetrahedral symmetry is 

shown in Figure 3b. The LVC curves have been 

enhanced to black bands to make them more visible, 

and the nodes of the graph are shown as small 

hemispheres. The 44 resulting 3-sided facets between the 

edges have been colored randomly. Thus we are able to 

provide a crisp visualization model for this difficult 

graph-embedding problem (Fig. 3b). 

4 PARAMETERIZED SHAPE GENERATION 

In 1995 I started to collaborate with Brent Collins, a 

wood sculptor who creates fascinating abstract 

geometrical shapes [1][2][8]. His work can be grouped 

into cycles that have a common recognizable 

constructive logic to them, and which exhibit a timeless 

beauty that captured my attention immediately when I 

first saw photographs of his work in The Visual Mind [4].  
My interaction with Brent Collins was triggered by 

images of his Hyperbolic Hexagon (Fig.5a), which can 
be understood as a toroidal warp of a six-story segment 

of the core of Scherk’s second minimal surface [7] 

(Fig.5b). In our very first phone conversation, we 

discussed the question of what might happen, if one 

were to take a seven-story segment of such a chain of 

cross-wise connected saddles and holes, and then bend it 

into a circular loop. We realized that the chain would 

have to be given an overall longitudinal twist of 90° 

before its ends could be joined smoothly. We further 

envisioned that interesting things might happen in this 

process: the surface may become single-sided, and its 

edges could join into a single continuous edge, forming a 

torus knot. 

Since neither of us could visualize exactly what such 

a construction would look like, we both built little mock-

up models from paper and tape (Séquin) or from pipe 

segments and wire meshing (Collins). In subsequent 

phone discussions, we expanded the scope of this 

paradigm. We asked ourselves, what would happen, if 

we gave the Scherk tower (Fig.5b) a stronger twist of, 

say, 270°, or of any additional 180° that would allow the 

ends of the saddle chain to join smoothly. Or, what 

would a sculpture look like that uses monkey saddles, or 

even higher-order saddles, rather than the ordinary 

(biped) saddles of the original Hyperbolic Hexagon? 
 

      

Fig. 5.  (a) Collins’ Hyperbolic Hexagon, (b) 4-story Scherk 
tower, (c) Collins’ Hyperbolic Heptagon. 

Constructing a realistic maquette of these relatively 

complex structures, precise enough for aesthetic 

evaluation, can be a rather labor-intensive process. 

During the first year of our collaboration, our ideas were 

coming forth at a rate much greater than what we could 

possibly realize in physical models. This led me to 
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propose the use of the computer to generate 

visualizations of the various shapes considered, to judge 

their aesthetic qualities and to determine which ones 

might be worthwhile to implement as full-scale physical 

sculptures. I started to develop a special-purpose 

computer program that could readily model these 

toroidal rings of Scherk’s saddle chains, as well as all the 

generalizations that we had touched upon in our 

discussions. This led to Sculpture Generator I which 
allowed me to create all these shapes interactively in real 

time by just choosing some parameter values on a set of 

sliders [9]. 

In the meantime, Collins had built the Hyperbolic 
Heptagon (Fig.5c), the twisted seven-story ring that we 
had first discussed on the phone. This two-foot wood 

sculpture showed us the potential of this paradigm of 

toroidal loops of saddle chains, and encouraged us to 

make additional sculptures of potentially much higher 

complexity. However, such sculptures would require 

more help from the computer than just the power of 

previewing the completed shape. Thus I enhanced my 

program with the capability to print out full-scale 

templates for the construction of these sculptures. The 

computer slices the designed geometry at specified 

intervals, typically 7/8 of an inch, and produces 

construction drawings for individual pre-cut boards from 

which the gross shape of the sculpture can then be 

assembled. Collins still has the freedom to fine-tune the 

detailed shape and to sand the surface to aesthetic 

perfection. 

This eventually led to our first joint construction, the 

Hyperbolic Hexagon II, which features monkey saddles 
in place of the original biped saddles. It is possible that 

Collins could have created this shape on his own without 

the help of a computer. However, our next joint piece, 

the Heptoroid, a much more complex, twisted toroid, 
featuring fourth-order saddles (Fig.6a), would definitely 

not have been feasible without the help of computer-

aided template generation. 

 

     

 Fig. 6.   (a) Heptoroid, from the collaboration with Brent 

Collins, and (b) doubly-wound quad Scherk-Collins toroid. 

 

In a further extension of the Scherk-Collins 

paradigm, it was found, that Scherk’s saddle-chain can 

be wound more than once around the toroidal ring. For 

a double loop, one needs to choose an odd number of 

stories, so that they properly interlace on the first and 

second round. With an appropriate amount of twist and 

flange-extensions, all self-intersection can be avoided 

(Fig.6b). With these generalizations of the original 

paradigm, intricate forms emerged whose relationship to 

the original Hyperbolic Hexagon are no longer self-
evident. 

 

4.1 Capturing a Paradigm 

In my interaction with Collins, an important new design 

component is added up front: I have to figure out what it 

is that I want my sculpture generator program to 

produce. This means that I first have to see a general 

underlying structure in a group of similar pieces in 

Collins’ work and extract a common paradigm that can 

be captured in precise enough terms to be formulated as 

a computer program. This, by itself, is an intriguing and 

creative task. Moreover, if the paradigm is captured in a 

general enough form, it can then be extended to find 

additional beautiful shapes that have not yet been 

expressed in Collins’ sculptures. 

The question arises, whether a commercial CAD tool, 

such as AutoCAD, SolidWorks, or ProEngineer, would 
have been adequate to model Collins’ sculptures. 

Indeed, with enough care, spline surface patches and 

sweeps could be assembled into a geometrical shape that 

would match one of Collins’ creations. But this approach 

would be lacking the built-in implicit understanding of 

the constructive logic behind these pieces, which I 

wanted to generalize and enhance to produce many 

more sculptures of the same basic type. For that I 

needed stronger and more convenient procedural 

capabilities than those that commercial CAD tools had to 

offer. I chose C, C++, and OpenGL as the 

programming and graphics environments. The user 

interface originally relied on Mosaic and later on Tcl/Tk, 

in which my students had already developed many 
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useful components, such as an interactive perspective 

viewing utility with stereo capabilities. 

Capturing a sculpture as a program forces me to 

understand its generating paradigm. In return, it offers 

precise geometry exploiting all inherent symmetries, as 

well as parametric adjustments of many aspects of the 

final shape. The latter turns out to be the crux of a 

powerful sculpture generator. If I build too few adjustable 

parameters into my program, then its expressibility is too 

limited to create many interesting sculptures. If there are 

too many parameters, then it becomes tedious to adjust 

them all to produce good-looking geometrical forms. 

Figuring out successful dependencies between the many 

different parameters in these sculptures and binding 

them to only a few adjustable sliders is the intriguing and 

creative challenge. 

In practice it turned out that almost every sculpture 

family that I tackled, required a new program to be 

written. These programs became my virtual constructivist 

“sculpting tools.” In the last few years, this virtual design 

environment has become more modular thanks to the 

SLIDE program library [11] created by Jordan Smith 

and enhanced with many useful modules for creating 

freeform surfaces by Jane Yen. Once a new program 

starts to generate an envisioned group of geometrical 

shapes, it often will take on a life of its own. In a playful 

interaction with various sliders that control the different 

shape parameters, and by occasional program 

extensions, new shapes are discovered that were not 

among the originally envisioned geometries. In this 

process the original paradigm may be extended or even 

redefined, and the computer thus becomes an active 

partner in the creative process of discovering and 

inventing novel aesthetic shapes [10].  

 

4.2 Examples 

In the Family of Twelve Scherk-Collins Trefoils (Fig.7), 
the space of parameter combinations is being explored 

for the range of saddles having from one to four 

“branches,” and for single as well as double loops 

around the toroidal ring. The concept of a saddle has 

been extended downwards to also include a single 

branch (B=1), which means that it is just a twisted band. 
For the case of the doubly wound loop (W=2), this band 
does self-intersect. For the single-branch case, the 

azimuth parameter has no relevant effect, and thus there 

are just single instances for W=1 and W=2. For the 
cases with 2 and 3 branches, all possible constellations 

are exhibited, showing both (positive and negative) 

azimuth values (An, Ap) that give front-to-back 

symmetry for each case. For the fourth-order saddles 

(B=4) the structure becomes rather busy and starts to 
loose its aesthetic appeal; thus only a single azimuth 

value is shown for W=1 and W=2, respectively. 

 

 

Fig. 7. Hyper-sculpture: Family of Twelve Scherk-Collins 
Trefoils (B=1 to 4 from left to right; top: W=2; bottom W=1). 

A graphical interface with individual sliders for each 

parameter allows the user of Sculpture Generator I to 
explore with ease the space of all Scherk-Collins toroids. 

For the twelve trefoils in this series (Fig.7), the width and 

thickness of the flanges was fine-tuned to optimize the 

aesthetic appeal of each particular trefoil by balancing 

the relative dimensions of the holes and branches and 

yielding a pleasing roundness – obviously a rather 

subjective process. The surface descriptions of the 

optimized shapes were then transmitted to a Fused 

Deposition Modeling machine [12] for prototyping. In 

this process, the geometry of the sculpture is 

geometrically sliced into thin layers, 0.01 inches thick. 

These layers are “painted” individually, one on top of 

another, by a computer-controlled nozzle, which 

dispenses the white ABS thermoplastic modeling 

material in a semi-liquid state at 270º centigrade, until 

the precise three-dimensional shape has been re-created.  

Representing geometrical shapes in a procedural 

form offers several advantages. The designs can easily be 

optimized with the adjustment of a few parameters. More 

complex designs can be generated than could be crafted 

by traditional means. The output can readily be scaled to 

any size and can be used to produce scale models by 

layered free-form fabrication. Moreover, interactive play 

with such parameterized programs extends the horizon 

of the designer and leads to new conceptual insights; this 

makes the computer an active part in the creative design 

process.  

 

4.3 Large-Scale Sculpture  

When a sculpture is scaled from a desk model to a large 

size suitable for a public space, or when the material for 

its realization changes, the design will often have to be 

adjusted in subtle ways and cannot just be scaled 
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uniformly. Cross-sectional profiles may have to be 

thinned or enlarged, flanges may have to be adjusted in 

thickness, and edges may have to be rounded differently. 

In this situation it is a big advantage to have a suitably 

parameterized description of the geometrical form.  

 

  

 

Fig. 8.   Monkey Trefoil: (a) from Sculpture Generator I, and  
(b) fine-tuned into a maquette for a 12-foot snow sculpture. 

This point was driven home quite clearly in the fall of 

2002, when Collins and Séquin were invited on short 

notice to provide a design for the 13th Annual 

International Snow-sculpting Championships in 

Breckenridge, Colorado. First the Sculpture Generator I 
was employed to create a couple of conceptual ideas 

(Fig.8a) for review by Stan Wagon, the experienced 

leader of our team. Based on his feedback we could very 

quickly choose a set of parameters that would balance 

visual impact, complexity, and the potential for actually 

being realizable in snow. In a second refinement phase 

we could then fine-tune the parameters to optimally 

match the sculpture to the overall dimensions of the 

snow blocks (10' × 10' × 12 feet tall) that are made 

available to the competitors. This final CAD description 

was than used to fabricate a scaled-down maquette on a 

rapid prototyping machine using a layered 

manufacturing technique (Fig.8b). The CAD 

representation also came in handy to make several 

orthogonal projections (Fig.9a) and cross sectional cuts 

as blueprints for on-site use during construction. 

 

    
 

Fig. 9.   Construction of snow sculpture: (a) blue-print projection 

from its side, (b) the definition of the flanges on the basic toroid. 

The snow sculpting teams had four days to turn a 20-ton 

block of snow into some dramatic or whimsical display. 

To assure the regularity of our desired toroidal shape, we 

first reduced our block to a 6-foot thick vertical slab. On 

the faces of this slab we drew concentric circles defining 

outer perimeter, the major radius, and the small central 

hole of a perfect torus. We also made a half-circle 

plywood template with the minor radius of the torus. 

This template could be “swept” around the outer 

perimeter to guarantee uniform thickness and roundness 

of the torus. On this torus surface we could then mark 

the final visible edges of the spiral flanges (Fig.9b). From 

there, we proceeded with free-hand sculpting to create 

the desired shape. It turned out rather nicely (Fig.10) 

and was awarded the silver medal. 

 

  
 

Fig. 10.   Snowsculpture: Whirled White Web: (a) side, (b) front. 

5 TOOLS FOR EARLY CONCEPTUAL DESIGN  

The weakest aspect of today’s CAD tools is their lack of 

support for the early, conceptual phase of design. When 

one starts with a brand new concept, say, ‘a bridge in the 
shape of a Moebius band,’ it is often difficult to enter that 
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first defining shape. 3D sketching tools, as far as they are 

available, are mostly inadequate. Many artists thus rather 

use clay, wire, scotch-tape, cardboard, or styro-foam, to 

make a first conceptual mock-up of a new geometric 

idea. Effective design ideation involves more than just 

the eyes and perhaps a (3D?) stylus or other pointing 

devices. Haptics is a technology that has yet to live up to 

its potential and to the designers’ needs. 

So, what is it that we would I like to see in an “ideal” 

CAD system, useful for the initial design of, say, abstract 

geometric sculpture or free-form shapes for consumer 

products? Such a system should combine the best of 

both the virtual CAD environment and of the real 

physical world. As virtual elements, any construction 

parts possess infinite strength, can be glued together 

easily, and just as easily be disassembled again. Of 

course, they are not subject to gravity, and thus there is 

no need for any scaffolding. 

On the other hand, some hands-on interaction seems 

rather desirable. Sweeping a hand through space to 

define a curve or a profile is often the most natural way 

to express one’s intent. On other occasions, one would 

like to use a piece of physical material, such as an elastic 

steel blade, or a piece of heavy velvet cloth to define a 

shape that is then governed by the intrinsic properties of 

the chosen material. These physical artifacts would be 

temporarily be collocated in the virtual context of the 

emerging design and would there be captured by some 

vision system or by some fast scanning process. The 

captured shape is then made available as a new 

geometric node in the design tree, subject to all the usual 

manipulations in the virtual design space. Once entered 

into the system, these shapes could then be assigned 

new – possibly fictitious – materials properties. Beams 

might bend like steel wires (MEC); surfaces may stretch 

like soap films (MES), or they could be subjected to 

some optimization process under the influence of one of 

several artificial “beauty” functionals such as a minimum 

variation functional (MVC, MVS). Good haptic feedback 

is still a desirable goal, even though it does not look to 

be close at hand. For many applications dealing with 

augmented reality, good co-location is also crucial. 

 

6 CONCLUSIONS 

Computer-aided design tools can and should be used 

also for aesthetic shape optimization. Surfaces can now 

be optimized efficiently using subdivision techniques and 

tailor-made energy functionals. By using a computer in a 

real-time, interactive feedback mode, it can become an 

amplifier for one’s creative impulses. 
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