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ABSTRACT 

 

This paper aims a segmentation procedure for an STL model on behalf of an automated multi-axis 

milling operations planning system. The STL file that represents the existing product model has to 

be segmented into regions suited for the planning of milling operations. Originating from the 

domain of rapid prototyping, the STL data format nowadays appears in other domains of 

manufacturing. Within machining, STL is being used for three-axis tool path generation and some 

prototype systems are able to generate five-axis tool paths directly on STL. The algorithm 

presented in this paper is situated in the step prior to tool path generation. The dedicated 

segmentation algorithm consists of a phase of sharp edge detection followed by a workpiece setup 

dependent segmentation. The dynamically variable nature of this segmentation scheme is stressed. 
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1. INTRODUCTION AND LITERATURE REVIEW 

Multi-axis machining is used for the manufacturing of 

complex shaped products. The CAM operation planning 

for multi-axis milling is a very labor-intensive task. One 

starts from the CAD model of the freeform shaped 

product and analyses the shape in order to identify 

regions suited for a specific machining operation. 

Particularly for freeform shapes it mostly happens that 

the identified machining regions do not accord with 

CAD model design features. Therefore a workaround 

using drive surface geometry is needed [8]. This 

mismatch between design features and manufacturing 

features for complex shaped geometry makes the 

operations planning a complicated task. It also makes 

that the workpiece CAD geometrical description is not 

always useful for the CAM programming so that other 

geometrical descriptions may be used for CAM 

programming purposes. In this research work a 

triangular faceted geometrical description was chosen. 

Triangular meshes are very popular data structures for 

product geometry description. They appear in 

visualization applications and computer graphics, CAE, 

RE (reverse engineering) and computer integrated 

manufacturing. In manufacturing engineering, triangular 

meshes for product geometry first appeared in the field 

of rapid prototyping as the STL (STereo Lithography or 

Standard Triangulation Language) data format. STL is a 

particular implementation of a triangular mesh. This 

data format was so successful that it became a de facto 

standard for geometrical data description. Its simplicity is 

probably the most dominant factor of success.  

An STL model is a surface model based on 1 

geometrical primitive, namely a triangle. This makes the 

geometry description homogenous, CAD-kernel 

independent, modeling history independent and it 

allows the description of whatever kind of shape 

complexity. The STL data format also has a lot of 

disadvantages, such as the limited accuracy, the high 

memory storage space and the complete loss of 

metadata of the product model. Despite its drawbacks, 

the importance of STL in CAD/CAM applications is still 

increasing. One sees nowadays STL appearing in 

traditional CAM applications (ex. tool path calculation 

based on STL) [6],[7]. Modeling and design based on 

faceted geometry is also gaining importance and is a 

topic of ongoing research.   

At least three reasons were decisive to use the STL data 

format within this application domain of multi-axis CAM 

for complex shapes. First, a homogeneous STL model is 

beneficial for analysis routines compared to complicated 

heterogeneous geometrical descriptions (ex. a set of 

different connected surface patches, complex sweeps, 

etc.). Those analysis routines are necessary for 

automated part geometry investigation. Second, 

complex (freeform) product shapes also advocate for 

STL since it hides the complex modeling history. 

Freeform shapes are conceived from advanced 

operations in CAD, like surface modeling operations, 

solid-solid intersections, etc. Finally, because of the 

homogeneity, sub regions of the geometry can easily be 
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defined and eventually altered according to the needs of 

certain CAM operation types.  

The drawback of this implicit simplification by STL is 

that the information content of the data is very limited. 

A phase of manufacturing feature identification on the 

product model is necessary before machining operations 

planning can be elaborated. Mind that this identification 

phase is also necessary if a classical CAD geometrical 

description is used, as already discussed before. The 

algorithm presented in this paper is part of such kind of 

manufacturing feature identification procedure. The 

algorithm aims to segment the STL into useful geometry 

sub regions for machining operations. This algorithm is 

developed specifically for multi-axis milling operations 

planning for complex shapes (ex. Fig. 1). Feature types 

like holes and regular shaped pockets are not considered 

as complex shapes. A lot of research for these regular 

feature types has already been done and is well 

documented in literature. 

 
(a) 

 
(b) 

Fig. 1. Example of a complex shaped workpiece to be machined 

by multi-axis milling. Original CAD model (a), STL model (b). 

Triangular meshes have already been studied 

extensively in literature on computer graphics, CAE and 

RE. Using STL for CAPP (more specifically operations 

planning for CAM) is a novel application domain.  

The particular problem of splitting up a triangular mesh 

into meaningful subsets (segmentation) seems to be very 

application specific. The segmentation algorithms for 

point cloud datasets (in RE for example) have to deal 

with other issues than the ones for STL based datasets. 

Scan measurements typically contain dense, noisy, more 

or less equally spaced data points. Advanced algorithms 

are necessary to process those scan datasets [2], [13]. 

The RE application also requires the retrieval of design 

features like holes, blends, sweeps, etc. because a CAD 

model needs to be reconstructed from the scan data. 

This issue also requires very specific algorithms [1]. STL 

dataset properties are rather different. The triangles can 

vary intensely in shape and size, some regions of the 

geometry are densely sampled, others are not, and the 

noise level is limited to the triangulation accuracy.  
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Fig. 2. STL model with different triangle shapes and sizes. 

 

Segmentation of STL datasets specifically for operations 

planning has not been addressed in literature before. 

However some related topics on segmentation are 

already reported. Razdan et al. report in [12] about a 

mixed approach of the watershed method [11] 

combined with an edge based method to deal with 

irregular spaced meshes. This method is quite general to 

be used in different application domains, but it is not 

fully automated. Manual interaction is needed to control 

the segmentation process.  

The algorithm in [12] uses local mesh adaptation. The 

issue of mesh adaptation appears very often in related 

literature, but is again application specific. Lee et al. 

describe a technique for global adaptation of triangular 

meshes in [9], while local adaptation techniques in the 

neighborhood of boundary features are developed in [4] 

and [15]. Sun et al. present in [14] an edge detection 

algorithm based on the concept of edge strength. This is 

used for surface segmentation as well as for adaptive 

surface smoothing in RE applications. Botsch et al. 

describe in [3] mesh adaptation to remove typical 

shaped triangles from STL models (called caps or 

needles, see  

Fig. 2) for CAE applications. 

The algorithm discussed in this paper will not change the 

topology of the basic triangular mesh. The mesh 

originates from a CAD model, so typical triangle shapes 
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will appear and this information can be used later on for 

the operations planning phase.  

2. PROPERTIES OF THE ALGORITHM 

The literature review in previous section illustrates the 

great variety of possible approaches to segment 

triangular meshes. This section explains the 

particularities of the developed algorithm.  

The input of the algorithm is an STL file generated from 

a CAD model of the workpiece. Unlike many other 

segmentation methods, the algorithm should not modify 

the triangular mesh since it assumes that the CAD STL 

generator delivers an adequate model. The triangular 

mesh resulting from the STL file has its typical properties 

like highly varying triangle shapes and sizes (see  

Fig. 2). This irregular mesh is beneficial from the 

viewpoint of memory occupation and it delivers 

information on the underlying geometry structure. Flat or 

near flat regions are coarsely sampled with big triangles 

while highly curved regions are sampled with a lot of 

small triangles. Ruled surfaces are sampled with very 

sharp long triangles. So the variety in triangles represents 

the characteristics of the underlying geometry. 

The core task of the algorithm is to segment the STL file 

into disjoint regions practically useful for multi-axis 

milling operations planning. By generation of the STL 

file, the boundaries between CAD features disappear. 

New segment boundaries have to be defined. This may 

look like a roundabout way but this is not the case. The 

algorithm will not try to find CAD feature boundaries, 

but it will look for boundaries of geometry regions that 

can be machined with a certain machining operation. A 

characteristic of complex shapes already mentioned is 

that machining regions and CAD entity boundaries 

seldom accord.  In the current practice, the CAM 

programmer has to work around this mismatch by 

defining drive geometry on top of the design geometry 

during the definition of multi-axis milling operations. 

This means that for this segmentation algorithm, the 

boundary definition will not only rely on geometrical 

artifacts, but also on machining specific elements. The 

setup of the workpiece into the machine will influence 

the segmentation. This will be discussed in the detailed 

algorithm description. 

Another important characteristic of the algorithm is that 

the segmentation does not result in only one exclusive 

solution for the workpiece STL model. Because of the 

application of multi-axis milling operations planning, a 

multitude of operation types are applicable for a certain 

workpiece. Each operation type may lead to another 

segmentation scheme. The algorithm needs to be able to 

calculate all those different segmentations. Because of 

that, it should work quite fast and concentrate on fast 

calculations rather than complex detailed mathematics.  

 

3. DETAILED ALGORITHM DESCRIPTION 

The segmentation algorithm for multi-axis machining 

operations planning is discussed in detail in this section. 

In the first subsection the data model being used is 

briefly introduced. Next the segmentation-processing 

algorithm is discussed. This processing contains two 

phases. In the first phase a preliminary segmentation is 

executed based on sharp boundary retrieval within the 

STL model. The second phase is the application specific 

phase where further segmentation of the model is based 

upon setup characteristics of the workpiece into the 

milling machine. Since during operations planning, 

multiple alternatives should be calculated and evaluated, 

this second phase has a dynamic behavior and is 

designed to quickly calculate different segmentations. 

Some examples conclude this section. 

 

3.1 Data Model 

The input of the algorithm is the STL file of the 

workpiece CAD model. This file actually contains only a 

collection of separate triangle descriptions (3 vertex 

coordinates and a facet normal vector for orientation 

purpose). On behalf of the segmentation algorithm an 

STL data model is built. An object-oriented design of the 

data model was selected because of the dynamic 

behavior of the system. The segmentation is not unique 

and alternative segmentations are needed for evaluation 

purposes during the multi-axis operations planning. An 

object oriented structure enables flexible iteration 

through the model and easy manipulation of several 

segments through referencing. Therefore, the system is 

implemented in JAVA using the VTK Visualization 

Toolkit (http://www.vtk.org) for the graphical inspection. 

Fig. 3 illustrates schematically the skeleton of the data 

structure model with its main concepts. 

 

STLModel

STLFacet

STLVertex

STLSurfacePatch

MachiningFeature

STLEdgeSegment

 

Fig. 3. Schematic data model diagram 

 

The scope of this paper does not allow detailed 

discussion on the object structure of the data model 

itself. 

 

3.2 First Phase: Sharp Boundary Segmentation 

The first phase of the segmentation algorithm for an STL 

model is based on sharp boundary retrieval. A sharp 
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edge is a good first criterion for defining a multi-axis 

machining feature boundary. Sharp edge based 

segmentation methods are common in literature [12]. 

Such methods are based on the dihedral angle value or 

on the length of the difference vector between the 

normal vectors of neighboring facets. A common remark 

with such methods is the importance of the threshold 

value used for edge classification. This value is very case 

specific and highly influences the quality of the 

algorithm. In many applications, the user sets this 

threshold value or can manipulate the value 

interactively. This is not desirable for the application in 

automated operations planning. Manual interaction 

should be avoided as much as possible. Two methods to 

cope with this issue were investigated in this research 

work. 

 

3.2.1 Edge Tracking Method 

The first method is called edge tracking. This method 

detects edge segments within the STL triangles collection 

and attempts to combine these edge segments into a 

closed boundary delimiting a surface patch segment. A 

start threshold value is set (ex. 2 ). All edges of the 

model are tested if they are candidate segment edge i.e. 

the length of the difference vector between the facets 

normal vectors exceeds the threshold. These candidate 

edges are arranged into an edge segments graph. The 

STL vertices and the candidate edges define that graph. 

Segmentation is now done by finding cycles into the 

graph (DFS Depth First Search is used). When the edge 

segments graph still contains entries after cycles have 

been removed (i.e. according segments defined), the 

threshold is decremented and the procedure is repeated 

iteratively.  

 

Fig. 4. Graph cycle that delimits an impractical surface patch. 

 

While this algorithm solves the problem with fixed 

threshold value, experiments showed that the algorithm 

fails for some specific cases to isolate meaningful 

segments. The issue is that for some workpiece models 

the edge segments graph contains many possible cycles 

and that there is a high risk of selecting a cycle delimiting 

a segment that is impractical for machining operations. 

An example is given in Fig. 4 (edge depicted with a thick 

black line). The DFS cycle detection algorithm causes 

this malfunction. While branching the edge segments 

graph, the algorithm cannot take into account the 

topology of the resulting cycle. It is very hard to find a 

correct working mechanism to enhance the cycle 

detection algorithm to predict in what direction the 

branching should happen to extract correct boundary 

cycles. This is because an edge segment belongs to two 

surface patches and it is not known a priori which 

surface patch will result from the cycle tracking. The 

algorithm only works well if the number of multiple 

connected vertices (connectivity > 2) in the edge 

segments graph is strictly limited. This is the case for very 

complex sculptured surfaces. However industrial 

complex sculptured parts mostly contain also some 

regular geometry with multiple connected vertices. This 

restricts the usability of the described method. Instead of 

trying to patch the shortcomings of the edge tracking 

method, a second method is suggested. 

 

3.2.2 Surface Flooding Method 

The second method uses a different viewpoint than the 

first method. In the surface flooding method, a single 

triangle facet is considered as a seed for a segment. 

Neighboring facets are added to that surface patch if the 

difference vector of both normal vectors has a length 

below a threshold value. The problem of threshold 

adaptation is handled here totally different from the 

previous approach. There exists a risk that a facet just is 

not added to a patch because of minimal exceeding of 

the threshold. This kind of artifacts causes the generation 

of very small segments (typically containing only a few 

small facets). Also specific facet shapes (ex. needles and 

caps as mentioned in the introduction) can cause such 

surface patches.  

 

Fig. 5. Correct sharp edge detection. 



 281 

Therefore the algorithm is extended with a recombinant 

phase, which filters out small surface patches. It does not 

make sense to identify small surface patches since they 

are useless from machining operation viewpoint. The 

facets of the filtered patches are added to the dominant 

neighboring surface patch. This algorithm now handles 

the same example as Fig. 4, and as Fig. 5 shows, the 

surface patch detection is correct. This latter approach 

seems to be quite robust to split up the STL product 

model into surface regions with sharp edges. Each facet 

of the model is guaranteed assigned to a surface patch 

by using this method and useless small surface patches 

are rearranged by the recombinant phase. 

An interesting property of this method is that a triangle is 

added to the segment whenever it shares one of its edges 

below the threshold. This makes that a triangle being 

rejected during the flooding iteration can still be added in 

a later iteration step via an alternative edge.  
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(a)   (b) 

Fig. 6. Alternative triangle connection. 

An example of this process is shown in Fig. 6. Let Sn be 

the segment at iteration step n of the surface-flooding 

algorithm. t is the triangle being processed during 

iteration step n. The gray area represents the triangles 

belonging to Sn. In Fig. 6(a) it is shown that triangle o is 

not added to the segment yet because during the 

processing of triangle u in an earlier step of the iteration 

the edge e1 exceeded the threshold value. During the 

testing of the neighbor facets of triangle t, it is detected 

that the edge e2 is below the threshold value, which 

makes that triangle o is added. In this way the spurious 

edge e1 is annihilated and the segment Sn+1 looks like 

Fig. 6(b) containing the triangle o.  
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(a)   (b) 

Fig. 7. Alternative triangle connection. 

The same procedure can happen when a triangle was 

already rejected twice, while it is added during the testing 

of the third edge. This situation is pictured in Fig. 7. 

Another interesting characteristic of this method 

compared to the edge tracking method is that each 

segment is bounded by a closed boundary. This property 

follows from the construction method of the segment. 

One sees that the threshold value is no hard boundary in 

the surface-flooding algorithm. On the one hand the 

principle discussed in Fig. 6 and Fig. 7 can by-pass the 

threshold value. On the other hand too small isolated 

segments are attached to a neighbor by the recombinant 

phase. For the experiments and examples, the initial 

threshold is set to 0.4 and this value performs well for the 

models tested until present. 

 

3.3 Second Phase: Machining Setup Based 

Segmentation 

The second phase of the segmentation process is driven 

by the application of multi-axis machining operations 

planning. This phase is responsible for the dynamic 

behavior of the segmentation. The aim is twofold: further 

segmentation based on a particular setup of the 

workpiece into the milling machine environment, and 

second providing a mechanism to repeat this 

segmentation for different kinds of setups. In that way, 

multiple segmentation schemes can be elaborated so that 

operations planning can evaluate them and decide 

which setup to choose. To achieve these two targets, a 

flexible segmentation procedure is elaborated. 

The concept of EGI (Extended Gaussian Image) is 

hereby used. Briefly stated, an EGI is a surface normal 

vector histogram on the Gauss unit sphere. This concept 

was introduced by Horn in [5]. An example is given in 

Fig. 8 where the EGI is 3D rendered and the histogram is 

colored. For algorithmic purposes, a corresponding Z-

map representation of the EGI will be used. 

 
(a)  (b)  (c) 

Fig. 8. Propeller blade model (a) with 3D rendered EGI (b) and 

Z-map representation EGI (c). 

For each segment defined by the first phase of the 

algorithm, an EGI can be computed. Each STL triangle 

normal vector contributes to the discrete EGI. 

The second phase will further split up the surface patch 

by pruning the EGI of that surface patch. This pruning 

happens by evaluating all triangles of a segment and test 
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if they pass through a filter. This filter characterizes the 

setup by indicating which machine directions are allowed 

and which are not. Two examples of such a filter are 

given in Fig. 9. The black cells indicate direction vectors 

that pass the filter while white cells indicate directions 

that are filtered out. 

   

 

 
(a)           (b)               (c) 

Fig. 9. Two sample filters (a) and (b). Machine setup for filter (b) 

pictured in (c). 

 

The complete segmentation (both phase 1 and phase 2) 

will be illustrated by example in Fig. 10, which is a 

simplified version of the impeller model in order to keep 

the pictures clear. The input is the original STL file from 

the CAD model. This file is converted into a connected 

STL data model without edge information Fig. 10(a). 

During the first phase of the segmentation the sharp 

boundaries of the model are retrieved. The skeleton of 

the sharp boundaries without the STL facets is visualized 

in Fig. 10(b). In Fig. 10(c) one particular segment 

(corresponding to an impeller blade) from the first phase 

segmentation is visualized. Also the Z-map 

representation of the EGI of the blade segment is shown 

in Fig. 10(c). Now the second phase of the algorithm is 

executed onto the blade profile segment. In this example 

the setup filter is set similarly to Fig. 9(a). Applying the 

pruning results in a further segmentation of the blade 

segment and the introduction of extra boundaries as 

shown in Fig. 10(d). The resulting segments are shown in 

Fig. 10(e) and Fig. 10(f). 

The segmentation in the second phase is completely 

dependent on the pruning definition of the EGI, set by 

the chosen filter. After the pruning step is executed, the 

same risk exists as with the surface flooding in the first 

phase that some small triangles just fall outside the 

pruning boundary and leave practical useless segments 

behind. To cope this problem, the same strategy is used 

as in the first phase surface flooding. The recombinant 

step is reused and applied after the pruning step.  

 

The dynamic behavior of this second step is already 

stressed several times. The concept of evaluating several 

segmentation schemes is illustrated by the next example. 

The original STL workpiece model is given in Fig. 11(a). 

 
 

(a) STL data model.  (b) First phase sharp edge detection.  (c) EGI of a first phase segment. 

 

 

       
 

 

   (d) Second phase filtered segment. (e) Resulting segment after second phase.        (f) Resulting segment after second phase. 

 

Fig. 10. Example of both first and second phase segmentation. 
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The first phase sharp edge retrieval results in the sharp 

edge boundary skeleton of the model. This skeleton is 

illustrated in Fig. 11(b).  
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Y 
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(c) 

 
(d) 

 

 
(e) 

Fig. 11. Example of multiple setups segmentation. 

 

For the second phase, the complex shaped feature in the 

middle of the part is further processed. The EGI of that 

segment is depicted in Fig. 11(c). Several setups for that 

segment can be considered. If a four-axis or five-axis 

setup is considered, the whole segment passes the setup 

filter, so that no further segmentation happens (also 

depicted in Fig. 11(c)). If a three-axis setup is considered 

along positive Z-direction, further segmentation happens. 

The resulting split-up into three segments and the filtered 

EGI are depicted in Fig. 11(d). Another possible three-

axis setup along the negative X-direction is considered in 

Fig. 11(e) and results in a further segmentation into two 

segments.  

One sees that the possibilities of setup-based 

segmentation quickly grow exponentially. It will be the 

responsibility of the operations planning algorithm to 

select some appropriate setups for input to the second 

phase segmentation.   

The object-oriented data structure supports the multiple 

segmentation schemes. This is necessary to keep track 

and to evaluate the alternatives already segmented. By 

the concepts of STLSurfacePatch (see Fig. 3) and 

Machining Feature on top of the STL data model, the 
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original geometry is not altered and the different 

segmentation schemes can exist together concurrently. 

 

4. CONCLUSIONS AND FUTURE WORK 

 

In this paper, the development of a dedicated 

segmentation algorithm is described to split up an STL 

CAD model into surface patches for multi-axis milling 

operations planning. Particularities of the application 

area are used for the conception of the algorithm. A two-

stage approach is deployed. First, sharp surface patch 

boundaries are detected. The second step further divides 

surface patches based on orientation information. That 

orientation information is captured in the EGI (Extended 

Gaussian Image). Segmentation happens by pruning that 

EGI. The pruning definition is characterized by the setup 

information of the workpiece into the milling machine 

tool. Multiple setup schemes can be processed which 

result in multiple segmentations of the same workpiece 

model. These multiple alternatives can be further 

processed by the operations planning system to 

effectively choose a suitable segmentation that will be 

used for multi-axis machining operations definitions.  

Tests show the effectiveness of the algorithm, but it 

should be pointed out that the development was focused 

on applications in the domain of complex shaped CAD 

geometry to be machined by multi-axis milling. The 

algorithm concentrates on fast calculations and efficient 

processing in order to support its dynamic requirements 

to quickly evaluate multiple setup possibilities.  
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