
 277

STL Model Segmentation for Multi-Axis Machining Operations Planning

Pierre P. Lefebvre 1 and Bert Lauwers2

1Division PMA, KULeuven Belgium, pierre.lefebvre@mech.kuleuven.ac.be
2Division PMA, KULeuven Belgium, bert.lauwers@mech.kuleuven.ac.be

ABSTRACT

This paper aims a segmentation procedure for an STL model on behalf of an automated multi-axis

milling operations planning system. The STL file that represents the existing product model has to

be segmented into regions suited for the planning of milling operations. Originating from the

domain of rapid prototyping, the STL data format nowadays appears in other domains of

manufacturing. Within machining, STL is being used for three-axis tool path generation and some

prototype systems are able to generate five-axis tool paths directly on STL. The algorithm

presented in this paper is situated in the step prior to tool path generation. The dedicated

segmentation algorithm consists of a phase of sharp edge detection followed by a workpiece setup

dependent segmentation. The dynamically variable nature of this segmentation scheme is stressed.

Keywords: STL, geometry segmentation, CAPP

1. INTRODUCTION AND LITERATURE REVIEW

Multi-axis machining is used for the manufacturing of

complex shaped products. The CAM operation planning

for multi-axis milling is a very labor-intensive task. One

starts from the CAD model of the freeform shaped

product and analyses the shape in order to identify

regions suited for a specific machining operation.

Particularly for freeform shapes it mostly happens that

the identified machining regions do not accord with

CAD model design features. Therefore a workaround

using drive surface geometry is needed [8]. This

mismatch between design features and manufacturing

features for complex shaped geometry makes the

operations planning a complicated task. It also makes

that the workpiece CAD geometrical description is not

always useful for the CAM programming so that other

geometrical descriptions may be used for CAM

programming purposes. In this research work a

triangular faceted geometrical description was chosen.

Triangular meshes are very popular data structures for

product geometry description. They appear in

visualization applications and computer graphics, CAE,

RE (reverse engineering) and computer integrated

manufacturing. In manufacturing engineering, triangular

meshes for product geometry first appeared in the field

of rapid prototyping as the STL (STereo Lithography or

Standard Triangulation Language) data format. STL is a

particular implementation of a triangular mesh. This

data format was so successful that it became a de facto

standard for geometrical data description. Its simplicity is

probably the most dominant factor of success.

An STL model is a surface model based on 1

geometrical primitive, namely a triangle. This makes the

geometry description homogenous, CAD-kernel

independent, modeling history independent and it

allows the description of whatever kind of shape

complexity. The STL data format also has a lot of

disadvantages, such as the limited accuracy, the high

memory storage space and the complete loss of

metadata of the product model. Despite its drawbacks,

the importance of STL in CAD/CAM applications is still

increasing. One sees nowadays STL appearing in

traditional CAM applications (ex. tool path calculation

based on STL) [6],[7]. Modeling and design based on

faceted geometry is also gaining importance and is a

topic of ongoing research.

At least three reasons were decisive to use the STL data

format within this application domain of multi-axis CAM

for complex shapes. First, a homogeneous STL model is

beneficial for analysis routines compared to complicated

heterogeneous geometrical descriptions (ex. a set of

different connected surface patches, complex sweeps,

etc.). Those analysis routines are necessary for

automated part geometry investigation. Second,

complex (freeform) product shapes also advocate for

STL since it hides the complex modeling history.

Freeform shapes are conceived from advanced

operations in CAD, like surface modeling operations,

solid-solid intersections, etc. Finally, because of the

homogeneity, sub regions of the geometry can easily be

 278

defined and eventually altered according to the needs of

certain CAM operation types.

The drawback of this implicit simplification by STL is

that the information content of the data is very limited.

A phase of manufacturing feature identification on the

product model is necessary before machining operations

planning can be elaborated. Mind that this identification

phase is also necessary if a classical CAD geometrical

description is used, as already discussed before. The

algorithm presented in this paper is part of such kind of

manufacturing feature identification procedure. The

algorithm aims to segment the STL into useful geometry

sub regions for machining operations. This algorithm is

developed specifically for multi-axis milling operations

planning for complex shapes (ex. Fig. 1). Feature types

like holes and regular shaped pockets are not considered

as complex shapes. A lot of research for these regular

feature types has already been done and is well

documented in literature.

(a)

(b)

Fig. 1. Example of a complex shaped workpiece to be machined

by multi-axis milling. Original CAD model (a), STL model (b).

Triangular meshes have already been studied

extensively in literature on computer graphics, CAE and

RE. Using STL for CAPP (more specifically operations

planning for CAM) is a novel application domain.

The particular problem of splitting up a triangular mesh

into meaningful subsets (segmentation) seems to be very

application specific. The segmentation algorithms for

point cloud datasets (in RE for example) have to deal

with other issues than the ones for STL based datasets.

Scan measurements typically contain dense, noisy, more

or less equally spaced data points. Advanced algorithms

are necessary to process those scan datasets [2], [13].

The RE application also requires the retrieval of design

features like holes, blends, sweeps, etc. because a CAD

model needs to be reconstructed from the scan data.

This issue also requires very specific algorithms [1]. STL

dataset properties are rather different. The triangles can

vary intensely in shape and size, some regions of the

geometry are densely sampled, others are not, and the

noise level is limited to the triangulation accuracy.

needle

shape

large

shape

Fig. 2. STL model with different triangle shapes and sizes.

Segmentation of STL datasets specifically for operations

planning has not been addressed in literature before.

However some related topics on segmentation are

already reported. Razdan et al. report in [12] about a

mixed approach of the watershed method [11]

combined with an edge based method to deal with

irregular spaced meshes. This method is quite general to

be used in different application domains, but it is not

fully automated. Manual interaction is needed to control

the segmentation process.

The algorithm in [12] uses local mesh adaptation. The

issue of mesh adaptation appears very often in related

literature, but is again application specific. Lee et al.

describe a technique for global adaptation of triangular

meshes in [9], while local adaptation techniques in the

neighborhood of boundary features are developed in [4]

and [15]. Sun et al. present in [14] an edge detection

algorithm based on the concept of edge strength. This is

used for surface segmentation as well as for adaptive

surface smoothing in RE applications. Botsch et al.

describe in [3] mesh adaptation to remove typical

shaped triangles from STL models (called caps or

needles, see

Fig. 2) for CAE applications.

The algorithm discussed in this paper will not change the

topology of the basic triangular mesh. The mesh

originates from a CAD model, so typical triangle shapes

 279

will appear and this information can be used later on for

the operations planning phase.

2. PROPERTIES OF THE ALGORITHM

The literature review in previous section illustrates the

great variety of possible approaches to segment

triangular meshes. This section explains the

particularities of the developed algorithm.

The input of the algorithm is an STL file generated from

a CAD model of the workpiece. Unlike many other

segmentation methods, the algorithm should not modify

the triangular mesh since it assumes that the CAD STL

generator delivers an adequate model. The triangular

mesh resulting from the STL file has its typical properties

like highly varying triangle shapes and sizes (see

Fig. 2). This irregular mesh is beneficial from the

viewpoint of memory occupation and it delivers

information on the underlying geometry structure. Flat or

near flat regions are coarsely sampled with big triangles

while highly curved regions are sampled with a lot of

small triangles. Ruled surfaces are sampled with very

sharp long triangles. So the variety in triangles represents

the characteristics of the underlying geometry.

The core task of the algorithm is to segment the STL file

into disjoint regions practically useful for multi-axis

milling operations planning. By generation of the STL

file, the boundaries between CAD features disappear.

New segment boundaries have to be defined. This may

look like a roundabout way but this is not the case. The

algorithm will not try to find CAD feature boundaries,

but it will look for boundaries of geometry regions that

can be machined with a certain machining operation. A

characteristic of complex shapes already mentioned is

that machining regions and CAD entity boundaries

seldom accord. In the current practice, the CAM

programmer has to work around this mismatch by

defining drive geometry on top of the design geometry

during the definition of multi-axis milling operations.

This means that for this segmentation algorithm, the

boundary definition will not only rely on geometrical

artifacts, but also on machining specific elements. The

setup of the workpiece into the machine will influence

the segmentation. This will be discussed in the detailed

algorithm description.

Another important characteristic of the algorithm is that

the segmentation does not result in only one exclusive

solution for the workpiece STL model. Because of the

application of multi-axis milling operations planning, a

multitude of operation types are applicable for a certain

workpiece. Each operation type may lead to another

segmentation scheme. The algorithm needs to be able to

calculate all those different segmentations. Because of

that, it should work quite fast and concentrate on fast

calculations rather than complex detailed mathematics.

3. DETAILED ALGORITHM DESCRIPTION

The segmentation algorithm for multi-axis machining

operations planning is discussed in detail in this section.

In the first subsection the data model being used is

briefly introduced. Next the segmentation-processing

algorithm is discussed. This processing contains two

phases. In the first phase a preliminary segmentation is

executed based on sharp boundary retrieval within the

STL model. The second phase is the application specific

phase where further segmentation of the model is based

upon setup characteristics of the workpiece into the

milling machine. Since during operations planning,

multiple alternatives should be calculated and evaluated,

this second phase has a dynamic behavior and is

designed to quickly calculate different segmentations.

Some examples conclude this section.

3.1 Data Model

The input of the algorithm is the STL file of the

workpiece CAD model. This file actually contains only a

collection of separate triangle descriptions (3 vertex

coordinates and a facet normal vector for orientation

purpose). On behalf of the segmentation algorithm an

STL data model is built. An object-oriented design of the

data model was selected because of the dynamic

behavior of the system. The segmentation is not unique

and alternative segmentations are needed for evaluation

purposes during the multi-axis operations planning. An

object oriented structure enables flexible iteration

through the model and easy manipulation of several

segments through referencing. Therefore, the system is

implemented in JAVA using the VTK Visualization

Toolkit (http://www.vtk.org) for the graphical inspection.

Fig. 3 illustrates schematically the skeleton of the data

structure model with its main concepts.

STLModel

STLFacet

STLVertex

STLSurfacePatch

MachiningFeature

STLEdgeSegment

Fig. 3. Schematic data model diagram

The scope of this paper does not allow detailed

discussion on the object structure of the data model

itself.

3.2 First Phase: Sharp Boundary Segmentation

The first phase of the segmentation algorithm for an STL

model is based on sharp boundary retrieval. A sharp

 280

edge is a good first criterion for defining a multi-axis

machining feature boundary. Sharp edge based

segmentation methods are common in literature [12].

Such methods are based on the dihedral angle value or

on the length of the difference vector between the

normal vectors of neighboring facets. A common remark

with such methods is the importance of the threshold

value used for edge classification. This value is very case

specific and highly influences the quality of the

algorithm. In many applications, the user sets this

threshold value or can manipulate the value

interactively. This is not desirable for the application in

automated operations planning. Manual interaction

should be avoided as much as possible. Two methods to

cope with this issue were investigated in this research

work.

3.2.1 Edge Tracking Method

The first method is called edge tracking. This method

detects edge segments within the STL triangles collection

and attempts to combine these edge segments into a

closed boundary delimiting a surface patch segment. A

start threshold value is set (ex. 2). All edges of the

model are tested if they are candidate segment edge i.e.

the length of the difference vector between the facets

normal vectors exceeds the threshold. These candidate

edges are arranged into an edge segments graph. The

STL vertices and the candidate edges define that graph.

Segmentation is now done by finding cycles into the

graph (DFS Depth First Search is used). When the edge

segments graph still contains entries after cycles have

been removed (i.e. according segments defined), the

threshold is decremented and the procedure is repeated

iteratively.

Fig. 4. Graph cycle that delimits an impractical surface patch.

While this algorithm solves the problem with fixed

threshold value, experiments showed that the algorithm

fails for some specific cases to isolate meaningful

segments. The issue is that for some workpiece models

the edge segments graph contains many possible cycles

and that there is a high risk of selecting a cycle delimiting

a segment that is impractical for machining operations.

An example is given in Fig. 4 (edge depicted with a thick

black line). The DFS cycle detection algorithm causes

this malfunction. While branching the edge segments

graph, the algorithm cannot take into account the

topology of the resulting cycle. It is very hard to find a

correct working mechanism to enhance the cycle

detection algorithm to predict in what direction the

branching should happen to extract correct boundary

cycles. This is because an edge segment belongs to two

surface patches and it is not known a priori which

surface patch will result from the cycle tracking. The

algorithm only works well if the number of multiple

connected vertices (connectivity > 2) in the edge

segments graph is strictly limited. This is the case for very

complex sculptured surfaces. However industrial

complex sculptured parts mostly contain also some

regular geometry with multiple connected vertices. This

restricts the usability of the described method. Instead of

trying to patch the shortcomings of the edge tracking

method, a second method is suggested.

3.2.2 Surface Flooding Method

The second method uses a different viewpoint than the

first method. In the surface flooding method, a single

triangle facet is considered as a seed for a segment.

Neighboring facets are added to that surface patch if the

difference vector of both normal vectors has a length

below a threshold value. The problem of threshold

adaptation is handled here totally different from the

previous approach. There exists a risk that a facet just is

not added to a patch because of minimal exceeding of

the threshold. This kind of artifacts causes the generation

of very small segments (typically containing only a few

small facets). Also specific facet shapes (ex. needles and

caps as mentioned in the introduction) can cause such

surface patches.

Fig. 5. Correct sharp edge detection.

 281

Therefore the algorithm is extended with a recombinant

phase, which filters out small surface patches. It does not

make sense to identify small surface patches since they

are useless from machining operation viewpoint. The

facets of the filtered patches are added to the dominant

neighboring surface patch. This algorithm now handles

the same example as Fig. 4, and as Fig. 5 shows, the

surface patch detection is correct. This latter approach

seems to be quite robust to split up the STL product

model into surface regions with sharp edges. Each facet

of the model is guaranteed assigned to a surface patch

by using this method and useless small surface patches

are rearranged by the recombinant phase.

An interesting property of this method is that a triangle is

added to the segment whenever it shares one of its edges

below the threshold. This makes that a triangle being

rejected during the flooding iteration can still be added in

a later iteration step via an alternative edge.

Sn

t

oe1

e2
u

Sn+1

t

oe1

e2
u

(a) (b)

Fig. 6. Alternative triangle connection.

An example of this process is shown in Fig. 6. Let Sn be

the segment at iteration step n of the surface-flooding

algorithm. t is the triangle being processed during

iteration step n. The gray area represents the triangles

belonging to Sn. In Fig. 6(a) it is shown that triangle o is

not added to the segment yet because during the

processing of triangle u in an earlier step of the iteration

the edge e1 exceeded the threshold value. During the

testing of the neighbor facets of triangle t, it is detected

that the edge e2 is below the threshold value, which

makes that triangle o is added. In this way the spurious

edge e1 is annihilated and the segment Sn+1 looks like

Fig. 6(b) containing the triangle o.

Sn

t
o

u1

u2

Sn+1

t
o

u1

u2

(a) (b)

Fig. 7. Alternative triangle connection.

The same procedure can happen when a triangle was

already rejected twice, while it is added during the testing

of the third edge. This situation is pictured in Fig. 7.

Another interesting characteristic of this method

compared to the edge tracking method is that each

segment is bounded by a closed boundary. This property

follows from the construction method of the segment.

One sees that the threshold value is no hard boundary in

the surface-flooding algorithm. On the one hand the

principle discussed in Fig. 6 and Fig. 7 can by-pass the

threshold value. On the other hand too small isolated

segments are attached to a neighbor by the recombinant

phase. For the experiments and examples, the initial

threshold is set to 0.4 and this value performs well for the

models tested until present.

3.3 Second Phase: Machining Setup Based

Segmentation

The second phase of the segmentation process is driven

by the application of multi-axis machining operations

planning. This phase is responsible for the dynamic

behavior of the segmentation. The aim is twofold: further

segmentation based on a particular setup of the

workpiece into the milling machine environment, and

second providing a mechanism to repeat this

segmentation for different kinds of setups. In that way,

multiple segmentation schemes can be elaborated so that

operations planning can evaluate them and decide

which setup to choose. To achieve these two targets, a

flexible segmentation procedure is elaborated.

The concept of EGI (Extended Gaussian Image) is

hereby used. Briefly stated, an EGI is a surface normal

vector histogram on the Gauss unit sphere. This concept

was introduced by Horn in [5]. An example is given in

Fig. 8 where the EGI is 3D rendered and the histogram is

colored. For algorithmic purposes, a corresponding Z-

map representation of the EGI will be used.

(a) (b) (c)

Fig. 8. Propeller blade model (a) with 3D rendered EGI (b) and

Z-map representation EGI (c).

For each segment defined by the first phase of the

algorithm, an EGI can be computed. Each STL triangle

normal vector contributes to the discrete EGI.

The second phase will further split up the surface patch

by pruning the EGI of that surface patch. This pruning

happens by evaluating all triangles of a segment and test

 282

if they pass through a filter. This filter characterizes the

setup by indicating which machine directions are allowed

and which are not. Two examples of such a filter are

given in Fig. 9. The black cells indicate direction vectors

that pass the filter while white cells indicate directions

that are filtered out.

(a) (b) (c)

Fig. 9. Two sample filters (a) and (b). Machine setup for filter (b)

pictured in (c).

The complete segmentation (both phase 1 and phase 2)

will be illustrated by example in Fig. 10, which is a

simplified version of the impeller model in order to keep

the pictures clear. The input is the original STL file from

the CAD model. This file is converted into a connected

STL data model without edge information Fig. 10(a).

During the first phase of the segmentation the sharp

boundaries of the model are retrieved. The skeleton of

the sharp boundaries without the STL facets is visualized

in Fig. 10(b). In Fig. 10(c) one particular segment

(corresponding to an impeller blade) from the first phase

segmentation is visualized. Also the Z-map

representation of the EGI of the blade segment is shown

in Fig. 10(c). Now the second phase of the algorithm is

executed onto the blade profile segment. In this example

the setup filter is set similarly to Fig. 9(a). Applying the

pruning results in a further segmentation of the blade

segment and the introduction of extra boundaries as

shown in Fig. 10(d). The resulting segments are shown in

Fig. 10(e) and Fig. 10(f).

The segmentation in the second phase is completely

dependent on the pruning definition of the EGI, set by

the chosen filter. After the pruning step is executed, the

same risk exists as with the surface flooding in the first

phase that some small triangles just fall outside the

pruning boundary and leave practical useless segments

behind. To cope this problem, the same strategy is used

as in the first phase surface flooding. The recombinant

step is reused and applied after the pruning step.

The dynamic behavior of this second step is already

stressed several times. The concept of evaluating several

segmentation schemes is illustrated by the next example.

The original STL workpiece model is given in Fig. 11(a).

(a) STL data model. (b) First phase sharp edge detection. (c) EGI of a first phase segment.

 (d) Second phase filtered segment. (e) Resulting segment after second phase. (f) Resulting segment after second phase.

Fig. 10. Example of both first and second phase segmentation.

 283

The first phase sharp edge retrieval results in the sharp

edge boundary skeleton of the model. This skeleton is

illustrated in Fig. 11(b).

Z

X

Y

(a)

(b)

(c)

(d)

(e)

Fig. 11. Example of multiple setups segmentation.

For the second phase, the complex shaped feature in the

middle of the part is further processed. The EGI of that

segment is depicted in Fig. 11(c). Several setups for that

segment can be considered. If a four-axis or five-axis

setup is considered, the whole segment passes the setup

filter, so that no further segmentation happens (also

depicted in Fig. 11(c)). If a three-axis setup is considered

along positive Z-direction, further segmentation happens.

The resulting split-up into three segments and the filtered

EGI are depicted in Fig. 11(d). Another possible three-

axis setup along the negative X-direction is considered in

Fig. 11(e) and results in a further segmentation into two

segments.

One sees that the possibilities of setup-based

segmentation quickly grow exponentially. It will be the

responsibility of the operations planning algorithm to

select some appropriate setups for input to the second

phase segmentation.

The object-oriented data structure supports the multiple

segmentation schemes. This is necessary to keep track

and to evaluate the alternatives already segmented. By

the concepts of STLSurfacePatch (see Fig. 3) and

Machining Feature on top of the STL data model, the

 284

original geometry is not altered and the different

segmentation schemes can exist together concurrently.

4. CONCLUSIONS AND FUTURE WORK

In this paper, the development of a dedicated

segmentation algorithm is described to split up an STL

CAD model into surface patches for multi-axis milling

operations planning. Particularities of the application

area are used for the conception of the algorithm. A two-

stage approach is deployed. First, sharp surface patch

boundaries are detected. The second step further divides

surface patches based on orientation information. That

orientation information is captured in the EGI (Extended

Gaussian Image). Segmentation happens by pruning that

EGI. The pruning definition is characterized by the setup

information of the workpiece into the milling machine

tool. Multiple setup schemes can be processed which

result in multiple segmentations of the same workpiece

model. These multiple alternatives can be further

processed by the operations planning system to

effectively choose a suitable segmentation that will be

used for multi-axis machining operations definitions.

Tests show the effectiveness of the algorithm, but it

should be pointed out that the development was focused

on applications in the domain of complex shaped CAD

geometry to be machined by multi-axis milling. The

algorithm concentrates on fast calculations and efficient

processing in order to support its dynamic requirements

to quickly evaluate multiple setup possibilities.

5. ACKNOWLEDGEMENTS

This research is funded by a specialization grant of the

Institute for the Promotion of Innovation through

Science and Technology in Flanders (IWT-Vlaanderen).

6. REFERENCES

[1] Benko P., Martin R. R. and Varady T., Algorithms

for reverse engineering boundary representation

models, Computer-Aided Design, Vol. 33, No. 11,

2001, pp 839-851.

[2] Besl P. J. and Ramesh C. J., Segmentation Through

Variable-Order Surface Fitting, IEEE Trans Pattern

Analysis and Machine Intelligence, Vol. 10, No. 2,

1988, pp 167-192.

[3] Botsch M. and Kobbelt L., A Robust Procedure to

Eliminate Degenerate Faces from Triangle Meshes,

in Proceedings of the Vision, Modelling &

Visualisation Conference, Stuttgart, Germany, 2001;

VMV pp 283-289.

[4] Botsch M. and Kobbelt L., Resampling Feature and

Blend Regions in Polygonal Meshes for Surface

Anti-Aliasing, in Proceedings of Eurographics, 2001;

20(3).

[5] Horn B. K. P., Extended Gaussian images,

Proceedings of the IEEE, Vol. 72, No. 12, 1984 pp

1671-1686.

[6] Jun C.-S., Kim D.-S. and Park S., Exact Polyhedral

Machining, in Proceedings SSM 1998; pp 263-271.

[7] Lauwers B., Kiswanto G. and Kruth J.-P.,

Development of a Five-axis Milling Tool Path

Generation Algorithm based on Faceted Models,

Annals of the CIRP, Vol. 52, No. 1, 2003, pp 85-88.

[8] Lauwers B., Kruth J.-P. and Dejonghe P., An

operation planning system for multi-axis milling of

sculptured surfaces, Int. J. Adv. Manufact.

Technology, Vol. 17, No. 11, 2001 pp 799-804.

[9] Lee A. W. F., Sweldens W., Schröder P., Cowsar L.

and Dobkin D., MAPS: Multiresolution Adaptive

Parameterization of Surfaces, in Proceedings of

SIGGRAPH Conference, 1998; pp 95-104.

[10] Lefebvre P. P. and Lauwers B., Automated Part

Geometry Analysis for Setup Selection in Multi-Axis

Machining Operations Planning, in Proceedings of

the 36th CIRP International Seminar on

Manufacturing Systems, Saarbrücken, Germany,

2003; pp 293-298.

[11] Mangan A. and Witaker R., Partitioning 3D surface

meshes using watershed segmentation. IEEE Trans

Visualization and Computer Graphics, Vol. 5, No. 4,

1999.

[12] Razdan A. and Bae M., A hybrid approach to

feature segmentation of triangle meshes, Computer-

Aided Design, Vol. 35, No. 9, 2003, pp 783-789.

[13] Sapidis N. S. and Besl P. J., Direct Construction of

Polynomial Surfaces from Dense Range Images

through Region Growing, ACM Trans on Graphics,

Vol. 14, No. 2, 1995, pp 171-200.

[14] Sun Y., Page D. L., Paik J. K., Koschan A. and

Abidi M. A., Triangle mesh-based edge detection

and its application to surface segmentation and

adaptive surface smoothing, in Proceedings of the

IEEE International Conference of Image Processing,

2002; III pp 825-828.

[15] Vorsatz J., Rössl C., Kobbelt L. P. and Seidel H.-P.,

Feature Sensitive Remeshing, in Proceedings

Eurographics, 2001; Vol. 20, No. 3.

