
 25 

Interpolating Multiple Intersecting Curves 

Using Catmull-Clark Subdivision Surfaces 

 
Abdulwahed Abbas1 and Ahmad Nasri2 

 
1The University of Balamand, abbas@balamand.edu.lb 

2American University of Beirut, anasri@aub.edu.lb 
 

 

ABSTRACT 

 

The problem of constructing a smooth subdivision surface interpolating multiple intersecting curves 

was partially addressed in the literature. In the context of Doo-Sabin subdivision surfaces, Nasri[3] 

presented a solution to interpolate unlimited number of curves through an extraordinary point. In the 

Catmull-Clark setting, no more than two intersecting curves could so far be interpolated. That is, the 

interpolation of multiple intersecting curves remains a non-trivial and elusive problem. This paper puts 

forth a solution to this problem. The solution relies in a fundamental way on the by-now well-known 

notion of Catmull-Clark Polygonal Complexes introduced in [5].  
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1. INTRODUCTION 

Several authors contributed to the interpolation of curves 

by subdivision surfaces. Initiated by Nasri back in 1995 

[3], an approach was described to generate a smooth 

Doo-Sabin subdivision surface through a mesh of curves.   

The approach was extended in 1997 [4] to the 

interpolation of dangling quadratic B-spline curves. The 

control polygon of such a curve can be obtained by 

tagging edges and vertices on the polyhedron describing 

the subdivision surface. The first attempt to study this 

interpolation problem in the Catmull-Clark setting was 

made by Schweitzer in 1997 [9] and later by Levin [2], 

who proposed for that the Combined Subdivision 

Scheme in 1999. The general use of polygonal 

complexes to interpolate curves by subdivision surfaces 

was proposed by Nasri in [5]. These complexes provide 

a general framework for the interpolation of intersecting 

or dangling curves under any subdivision scheme. Since 

the limit of subdivision of a polygonal complex is a 

curve, the key idea is to identify a polygonal complex 

within the control mesh representing the surface. This 

simply means that the limit curve will very naturally be 

interpolated by the limit surface of the corresponding 

control mesh. Polygonal complexes were initially 

proposed for the Doo-Sabin subdivision scheme and 

later for the Catmull-Clark scheme [6].    

 

As it currently stands, the problem of interpolating 

intersecting curves by a smooth surface is solved under 

the constraint that no more than two curves can intersect 

at any given point. This problem was recently addressed 

by Nasri [8], where an approach was proposed for the 

interpolation of unlimited number of curves through an 

extraordinary point in the context of Doo-Sabin 

subdivision surfaces. Nevertheless, this remained a 

challenging problem in the context of Catmull-Clark 

subdivision surfaces.  

 

This paper presents an intuitively-clear and easy to 

implement technique to solve this exact problem. The 

particular approach being followed here is similar to 

what is outline above. In fact, the idea is to have curve 

information embodied as limits of subdivision of 

polygonal structures designed as an integral part of the 

control mesh representing the surface. As a result, the 

curves limit of these structures will very naturally reside 

on the limit subdivision surface of the initial control 

mesh.  

 

Our previous results [6, 7] on the interpolation of curves 

by a Catmull-Clark (CC) subdivision surface are 

constrained by factors that are worth noting. In fact, each 

curve to be interpolated has to be manipulated in 

isolation (i.e. it cannot intersect with any other of the 

given curves) and either it has to be closed or, when it is 

open, the surface has to be open and the curve has to 

stretch from one border vertex of the surface to another 

border vertex. 

 

These limitations will surely need to be overcome before 

a theory of the subject can be said to be complete. As 



 26 

such, the treatment of intersecting curves in this setting 

has to be seen as an effort in this direction.  

This paper proceeds as follows. Section 2 reminds the 

reader of the basics of the Catmull-Clark subdivision 

scheme. Section 3 contains a review of the notion of CC 

polygonal complexes and its role in achieving the 

interpolation of individual curves by CC subdivision 

surfaces. Section 4 introduces the notion of X-

Configurations and section 5 identifies its role in 

achieving the interpolation of multiple intersecting 

curves by CC subdivision surfaces. Section 6 identifies 

some useful directions leading from the research ideas 

reported in this paper. The final sections of the paper 

conclude with a general summary and some useful 

conclusions. 

 

2. CC SUBDIVISION AND LIMIT SURFACES 

In a CC subdivision step [1], a control mesh M is 

subdivided into another control mesh M’, as follows (see 

Figure 1).  

 

 
 

Fig. 1. The CC Subdivision Scheme 

 

Each inner face F of the mesh gives rise to an F-vertex 

that is the average of the vertices of the face F. Each 

inner edge E gives rise to an E-vertex that is the average 

of the vertices of the edge together with the F-vertices of 

the adjacent faces of E. Each inner vertex v gives rise to 

a V-vertex as specified by the following formula: 

 

((n-2)*v + (R + S)/n)/n 

where 

• n is the number of faces adjacent to v 

• R = Sum ({vi; i = 1 .. n}), where vvi is an edge 

of the corresponding mesh. 

• S = Sum ({vfi; i = 1 .. n}), where vfi is an F-

vertex of a face fi of the mesh adjacent to the 

vertex v. 

 

At the end of this process, each F-vertex is connected to 

the adjacent E-vertices and each E-vertex is connected to 

the adjacent V-vertices. The resulting faces will form the 

new subdivided mesh. In this context, note that repeated 

application of this subdivision process will in general lead 

to more faces and smaller edges. At the limit, this will 

converge to a smooth surface. 

According to this formulation, the border edges and 

vertices do not contribute any new vertices. Therefore, 

these vertices and edges are generally kept away from 

the limit surface. However, these vertices and edges are 

sometimes incorporated into the main subdivision 

routine as special cases. 

 

3. CC POLYGONAL COMPLEXES 

A simple CC polygonal complex is a 3×n matrix M of 

points representing three parallel polygons (ti), (mi) and 

(bi), all of the same length. These may be seen as a 

sequence of pairs of rectangular faces, where each pair 

of faces of this sequence has a common edge and each 

two consecutive pairs have common respective edges.  

 

A general CC polygonal complex is encountered when 

the polygons (ti), (mi) and (bi) do not all have the same 

length. That is, the corresponding faces are not all 

rectangular at the outer edges. However, it is important 

to note here that each inner vertex of a CC complex 

must be regular in the sense that it connects exactly four 

edges. 

 

Note here that a general CC complex can be 

transformed into a simple one after be performing a 

single CC subdivision step. Note also that a CC complex 

is interesting because, under subdivision, it gets 

transformed into a thinner and thinner complex which, 

at the limit, converges to a smooth curve. 

In this context, the limit of a simple CC complex M is a 

B-spline curve whose control polygon P is given by the 

following formula (see [6]): 

 

(1/6)*[1 4 1]*M                                                           (1) 

          

The direct use of that is as follows. When a complex is 

embodied within a control mesh, its limit curve will then 

naturally be interpolated by the limit surface of this mesh 

 

Likewise, if a CC complex M is subdivided one step into 

M’ and if the limit polygon P of M is also subdivided one 

step into P’, then the property stated in equation(1) will 

be preserved under subdivision. That is, P’ will be equal 

to (1/6)*[1 4 1]*M’. This observation is worth noting as it 

is quite crucial to the analysis conducted in this paper. 

 

Now, if a complex M’ is obtained from a CC complex M 

by substituting the mid-polygon m of M by the polygon 

(see [7]): 

 

m’=(1/4)*[-1 6 -1]*M                                                  (2) 
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then the limit of M’ is a B-spline curve identical to that of 

m. 

 

The direct use of that is as follows. Given a curve defined 

by a control polygon (mi), we can turn it into a polygonal 

complex M by adding to it two more rows of points (ti) 

and (bi). Applying the transformation (2), we can 

guarantee that any mesh embodying the complex M’ will 

in fact be interpolating the original curve defined by (mi). 

 

4. X-CONFIGURATIONS 

We have established in the previous section the 

correspondence between CC complexes and B-spline 

curves and the usefulness of that for interpolating 

isolated (non-intersecting) curves. In this section, we will 

see how this notion can be extended to deal with 

situations where the given curves can intersect. 

 

It is to be noted that if two complexes meet end-to-end, 

their limit curves do meet but are generally different from 

their original versions in the immediate neighborhood of 

their meeting point (see Figure 2). 

 

This is to be expected, since the middle vertex there is no 

longer a border vertex. However, this vertex will be 

regular. The same observation is true in the case where 

the number of complexes is four (see Figure 3).  

 

In both cases, it would be interesting to determine what 

exactly happens at the meeting point of these complexes. 

 
 

Fig. 2. Intersection of Two Complexes 

 
Fig. 3. Intersection of Four Complexes 

 

In the situation where the number of complexes is not 

two or four, the center vertex will not be a regular vertex. 

Thus, each connecting complex will not be regular 

around the center vertex in the sense discussed above, 

because all polygons of various complexes will have this 

vertex as their meeting point.  

 

Definition 1: an X-Slice is a closed polygon with one of 

its vertices marked as its starting point.  

Definition 2: an X-Configuration is composed of an 

even number n (n ≥ 4) of X-Slices, all adjacent (one to 

the next and the last to the first) around the same starting 

point.  

 
 
Fig. 4. An X-Configuration, the shaded face is an X-Slice of this 

configuration 

 

It is easy to see that a one-step subdivision of an X-

Configuration will result in an X-Configuration and the 

limit of subdivision of an X-Configuration is a point 

corresponding to its innermost vertex.  

 

 

 

 

 

 

 

 

 
Fig. 5.  The Symmetry Condition 

 

Now, a symmetry condition can be formulated in such a 

way that, if satisfied by an X-Configuration, will leave the 

centre of the X-Configuration undisturbed under CC 

subdivision. 

 
 

Fig. 6. Intersection at a symmetric X-Configuration 

 

A preliminary version of this condition can be stated as 

follows (see Figure 5): the 2k X-Slices go around the 

centre of the X-Configuration in successive pairs. Each of 
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those pairs has its component X-Slices symmetric with 

respect to their common edges. Furthermore, each X-

Slice is symmetric to the one directly opposite to it with 

respect to the center of the X-Configuration. 

 

Note here that a more general (but more subtle) version 

of this condition can arguably be formulated. Note also 

that this symmetry condition does not imply that all the 

vertices of the X-Configuration involved have to be 

coplanar (see Figure 11 below for an illustration of that). 

 

Now, if any number n (n ≥ 2) of complexes meet at a 

symmetric planar X-Configuration of the kind discussed 

above, then one would be justified in expecting that the 

corresponding limit curves will meet at the centre of this 

X-Configuration and that the surface will be tangent-

plane continuous there. 

 

For instance, if two complexes meet at symmetric X-

Configuration, then the curves corresponding to these 

two complexes will meet at the center of this X-

Configuration and will be smooth there (see Figure 6). 

Fig. 7.  X-Complex Subdivision 

 

5. INTERSECTION OF CC COMPLEXES 

 

Definition 3: an X-Complex is a group of two or more 

CC polygonal complexes connected to a common X-

Configuration (see an illustration of that in Figure 4 

above). Thus, an X-Configuration acts as a docking 

station where CC complexes may be connected to any of 

its available ports. 

 

In the irregular situation depicted in Figure 4, the limit of 

any docking polygonal complex (P) cannot be 

established via the formula stated in equation (1). 

Moreover, it is not at all obvious how to construct a CC 

polygon that, when subdivided in the conventional 

sense, will satisfy the properties derived from (1) for (P) 

(see second paragraph following equation (1) above). 

This is true, specifically in the neighborhood of the center 

vertex of the X-Configuration (see Appendix, for more 

details). 

 

5.1 Virtual Faces  

In order to handle this specific problem, we will resort to 

the notion of virtual faces. 

 

Definition 4: Given a face F of a mesh, a virtual face 

corresponding to F is a face that is not actually part of 

the mesh, but it is used instead of F to derive the F-

vertex corresponding to F after a one-step subdivision.  

 

This notion will be used for the purpose of obtaining the 

desired interpolation effects at the limit of the subdivision 

process. 

 
 

Fig. 8.  X-Slices stretching into virtual faces 

 

The way these virtual faces are constructed is as follows: 

the extremity side of a polygonal complex connected to 

an X-Shape is stretched toward the centre of the X-

Shape (see Figure 8). This is done in such a way as to 

have this centre as the midpoint of this extremity side 

(also see construction below). 

  

It is important to note here that these virtual faces are 

introduced at the start of the subdivision process. These 

will be subdivided and used to derive alternative F-

vertices at every step of the subdivision; that is, until the 

limit of the subdivision is reached. This in fact amounts 

to altering the coefficients of the subdivision scheme at 

and around the center of the irregular X-Configuration. 

However, these new coefficients will remain constant in 

those regions throughout the subdivision process. 
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5.2 Virtual Face Construction 

In the construction below, A0 is the centre of the 

symmetric X-Configuration (see Figures 7 and 9). The 

vertices e2 (resp. e3) are the F-vertices corresponding to 

the face A0E1E2D2 (resp. A0E1E3D3). We need to create 

virtual faces A0E1E2D’2 and A0E1E3D’3 such that   

 

A0 = (D’2 + D’3)/2 

 

This way, we obtain the new desired F-vertices e’2 and 

e’3 as required. We do that by extending E1A0 in the 

direction of A0 and finding a point X there so that (0 ≤ u 

≤ 1): 

 

D’2 = uX + (1-u)D2 

D’3 = uX + (1-u)D3 

 

This will yield the following two results (0 ≤ t ≤ 1/2): 

  

D’2 = A0 + tD2 – tD3 

D’3 = A0 – tD2 + tD3 

 

This way, we obtain new subdivision coefficients (the 

corresponding subdivision matrix is in the Appendix).  

 

It is also important to note that these subdivision 

coefficients need to be modified only in the immediate 

vicinity of the irregular vertex of the X-Shape, when 

calculating the F-vertex of the corresponding faces, and 

nowhere else.  It is also important to note that this will 

take place in places where the symmetry condition holds, 

and nowhere else. 

 

5.3.  Subdivision of an X-Complex  

Now, the subdivision of the X-Complex proceeds as 

usual, except that, when it comes to calculating its F-

vertex, each X-Slice of the X-Configuration is replaced 

by its associated virtual face. 

 

More specifically, every step of the CC subdivision 

routine proceeds as usual except when it comes to 

calculating the F-vertex of an X-Slice F with a starting 

vertex A0. Here, we proceed as follows:  

 

Assume that F = [D2, A0, E1, E2] is the X-Slice at the lhs 

of the intended polygonal complex and F’ = [E3, E1 

A0,D3] is the X-Slice at the rhs of that. Replacing F and F’ 

by their associated virtual faces, the F-vertex coming 

from F is  

 

(2A0+tD2–tD3+E1+E2)/4 

 

and that coming from F’ is  

 

(2A0-tD2+tD3+E3+E1)/4 

 

The reader may note that the parameter t may be used a 

shape handle to control the quality of the interpolating 

surface around the center of the X-Configuration. 

 

Now, it is quite straightforward to expect that the one-

step subdivision of an X-Complex is an X-Complex (see 

Figure 7) and the limit of subdivision of an X-Complex is 

a set of curves that start from the limit point of its 

associated X-Configuration. 

 
Fig. 9. The Construction 

 

That is, the limit curves of an X-Complex is interpolated 

by any surface embodying this X-Complex and 

subdivided as indicated above (see Figure 12). 

 

5.4. Continuity Analysis 

The virtual face construction can be looked at in two 

ways. First, due to the nature of the X-Configuration, 

these faces turn out to be overlapping faces to which a 

normal Catmull-Clark mask is applied. As subdivision 

proceeds, this overlapping does not produce any 

undesirable side-effects because the centroid of the 

virtual face of an X-Slice will always fall within the X-

Slice’s boundaries. On the other hand, one may look at 

the virtual faces as modification of the subdivision 

coefficients around the point where the interpolated 

curves intersect, which means that continuity has to be 

analyzed.  In this context, it is not difficult to conjecture 

that the smoothness condition will be maintained.  

 

6. FURTHER WORK 

The immediate work that needs to be done is an analysis 

of the subdivision matrix suggested above. In fact, the 

Eigen values will have to be computed and this analysis 

will have to be accompanied with pictures of the 

characteristic map. 
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As further work, we will project below how to construct a 

surface interpolating a set of intersecting curves.  

 

 
 
Fig. 10. The interpolated curve starts from the center of a planer 

X-Configuration 

 

In fact, given a set of curves intersecting at a given point, 

it is enough to construct an X-Complex (X) that satisfies 

the following conditions: 

 

• Each of the given curves is embodied in a 

polygonal complex (as its middle row) of (X). 

• The X-Configuration of (X) satisfied the 

properties of planarity and symmetry stated 

above. 

 

 
 
Fig. 11. The interpolated curve starts from the center of a non-

planer X-Configuration  

 

Having that, the repositioning of vertices as stated in 

equation(2) will be sufficient to guarantee that any 

surface embodying the resulting X-Complex will in fact 

be interpolating the initial curves. 

 

Note here that the repositioning mentioned in previous 

paragraph does not at all change the properties of 

planarity and symmetry of the corresponding X-

Configuration (see Figure 13). 

 

 
 

 

 
 
Fig. 12. Three interpolated curves meet at two different crossing 

points on a closed surface 

 

7. CONCLUSIONS 

A solution to the interpolation of more than two curves 

meeting at the same point in Catmull-Clark subdivision 

surfaces is presented. In addition, the approach can also 

handle dangling curves. 

 

One advantage of using polygonal complexes here is in 

providing the ability to add derivative information across 

the interpolated curves. Therefore tangent plane and 

curvature constraints can be accommodated within the 

interpolation process. The symmetry conditions 

established around extraordinary points can be waved 

under affine map transformations leading to more 

freedom in the layout of the interpolated curves. Further 

work includes the construction of these curves from 

tagged control polygons on the polyhedron defining the 

surface and the use of the additional shape parameter 

around the intersection points. 
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Fig. 13. Six different interpolated curves meet at the same 

crossing point on an open surface 
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Fig. 14. CC Subdivision of a Polygon 

 

APPENDIX 

 

I. THE PROOF 

This proof should be taken as a justification of the choice 

of the new subdivision coefficients around the centers of 

the X-Configurations of the mesh. The proof should be 

read with reference to Figures 7, 9 and 14.  

 

In a CC subdivision step, a B-spline control polygon P = 

[A0,E0,F0,…] is subdivided into a polygon Q = 

[A0,e0,m0,n0,p0,…] as follows: 

• e0 (resp. n0 and q0) is the midpoint of the edge 

A0E0 (resp. E0F0 and F0G0), etc. 

• m0 (resp. p0) is the midpoint of the edge 

connecting the midpoints of E0e0 and E0n0 

(resp. the midpoint of the edge connecting the 

midpoints of F0n0 and F0q0), etc. 

• The extremity A0 of the open polygon is 

unchanged under this subdivision scheme 

Repeating this subdivision step on the polygon Q (and so 

on) leads to polygons where consecutive vertices are 

closer and closer to each other. At the limit, this process 

converges to a smooth curve derived from the initial 

control polygon P.  

G0 
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E0 F0 

q0 

e0 p0 m0 
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We will only follow the behavior of the vertices that 

behave abnormally due to the irregularity of the centre 

vertex A0. 

 

a) The polygon: 

- A0 does not change 

- E0 = (E2 + 4E1 + E3)/6 

- F0 = (F2 + 4F1 + F3)/6 

- e0  = (A0 + E0)/2 

         = (A0+E2+4(A0+E1+A0+E3)/12 

- m0 = (e0 + 2E0 + n0)/4 

   = (A0 + 6E2 + F2 + 4(A0+6E1+F1)+ 

A0+6E3+F3)/48 

 

b) The Subdivided Mesh 

- e2 = (A0 + E1 + D2 + E2)/4 

- e3 = (A0 + E1 + D3 + E3)/4 

- e1 = (A0 + E1 + e2 + e3)/4 

        = (D2+E2+6(A0+E1)+D3+E3)/16 

- e0 = (e2+4e1+e3)/6 

        = (D2+E2+4(A0+E1)+D3+ E3)/12 

- m2 = (A0+D2+6(E1+E2)+F1+F2)/16 

- m3 = (A0+D3+6(E1+E3)+F1+ F3)/16 

- m1 = (D2+6E2+F2+6(A0+6E1+F1)+D3+ 6E3 + 

F3)/64 

- m0 = (m2 + 4m1 + m3)/6 

= (D2+6E2+F2+4(A0+6E1+F1)+D3+ 

6E3+F3)/48 

 

A quick glance is enough to show that for the version of 

e0 (resp. m0) in the polygon to be equal to its counterpart 

in the subdivided mesh, it is sufficient to have: 

A0 = (D2 + D3)/2 

 

II. THE SUBDIVISION MATRIX 

The following points about this matrix should be noted: 

• The matrix is multiplied by a factor of  1/288 

• This matrix illustrates the case where the 

irregular vertex has a valence equal to 6. In 

Figure 15, we take u to be equal to 1 (also see 

section 5.2).  

The matrix can be generalized through having a 

parameter t, where t = u/2 (see Figure 16).  In other 

words: 0 <= t <= ½.  (also see section 5.2) 

 

 
\ A0 E1 B3 B2 D2 D3 A1 E2 E3 C3 A3 A2 C2 

a0 216 12 12 12 8 8 8 2 2 2 2 2 2 

e1 144 108 0 0 0 0 0 18 18 0 0 0 0 

b3 144 0 108 0 0 0 0 0 0 18 18 0 0 

b2 144 0 0 108 0 0 0 0 0 0 0 18 18 

d2 144 18 0 18 90 -9 -9 18 0 0 0 0 18 

d3 144 18 18 0 -9 90 -9 0 18 18 0 0 0 

a1 144 0 18 18 -9 -9 90 0 0 0 18 18 0 

e2 144 72 0 0 36 -36 0 72 0 0 0 0 0 

e3 144 72 0 0 -36 36 0 0 72 0 0 0 0 

c3 144 0 72 0 0 36 -36 0 0 72 0 0 0 

a3 144 0 72 0 0 -36 36 0 0 0 72 0 0 

a2 144 0 0 72 -36 0 36 0 0 0 0 72 0 

c2 144 0 0 72 36 0 -36 0 0 0 0 0 72 

 
Fig. 15. The Constant Subdivision Matrix (u = 1) 

 
\ A0 E1 B3 B2 D2 D3 A1 E2 E3 C3 A3 A2 C2 

a0 216 12 12 12 8 8 8 2 2 2 2 2 2 

e1 144 108 0 0 0 0 0 18 18 0 0 0 0 

b3 144 0 108 0 0 0 0 0 0 18 18 0 0 

b2 144 0 0 108 0 0 0 0 0 0 0 18 18 

d2 144 18 0 18 72 +36t -18t -18t 18 0 0 0 0 18 

d3 144 18 18 0 -18t 72 +36t -18t 0 18 18 0 0 0 

a1 144 0 18 18 -18t -18t 72 +36t 0 0 0 18 18 0 

e2 144 72 0 0 72t -72t 0 72 0 0 0 0 0 

e3 144 72 0 0 -72t 72t 0 0 72 0 0 0 0 

c3 144 0 72 0 0 72t -72t 0 0 72 0 0 0 

a3 144 0 72 0 0 -72t 72t 0 0 0 72 0 0 

a2 144 0 0 72 -72t 0 72t 0 0 0 0 72 0 

c2 144 0 0 72 72t 0 -72t 0 0 0 0 0 72 

 
Fig. 16. The Parameterized Subdivision Matrix 


