
 

 

 

 

243 

Explicit Free-form Curve Interpolation and Error Analysis for NC Machining 

of Complex Surface Models 

 
Yongfu Ren  and  Yuan-Shin Lee 

 
North Carolina State University,  yren@ncsu.edu  and yslee@ncsu.edu  

 
 

ABSTRACT 

 
This This paper presents an explicit solution approach to calculate the exact maximal interpolation 
errors for cubic free-form curves and the offset curves. To solve the maximal interpolation errors, 
the exact locations of the maximal error points are found by solving polynomial functions explicitly. 
Compared with conventional approaches, the proposed interpolation method ensures interpolation 
accuracy and generates fewer interpolation points for free-form curves and their offset curves. The 
proposed method can be used for high-accuracy curve interpolation and NC tool-path generation 
in CAD/CAM systems. Computer implementation and practical examples are also presented in this 
paper. 

 
Keywords: CAD/CAM, Curve interpolation, NC machining, Sculptured surface machining, Offset 

curves. 

 
 

1. INTRODUCTION 

Modern products usually have complex shapes that need 
to be machined by CNC machines with highly accurate 
tool paths. However, current curve interpolation 
methods of using approximation may not always 
guarantee tool-path accuracy [3,6]. As shown in Figure 
1, a cutter is used to machine a cutter contact (CC) curve 

)(tr  with a given tolerance τ . One of the traditional 

methods is to use circular arcs to approximate the local 
region of the curved CC path [1,2,3,4]. Figure 1 shows 
the problem of inaccurate interpolation of the offset 

curve between the current CC-point iP  and the next 

CC-point 1+iP . Although the estimated error τε ≤s , the 

actual error is τε >o , as shown in Figure 1. Therefore, 

the cutter will cut into the part surface with the actual 
error ε0 larger than the given tolerance τ . In this case, 

the part may not be acceptable to meet the high 
accuracy requirement in manufacturing.  

The problem arises from the incorrect calculation of the 
interpolation error (also called the chordal deviation 
error). Traditionally, chordal deviation is estimated either 
by circular approximation or convex hull properties. In 
circular approximation approaches, chordal deviation is 
estimated based on the approximation arc around the 
interpolation points [3].  
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Fig. 1. The tool-path may not meet the machining 
tolerance 

The second approach is the subdivision method based 
on the convex hull property of free-form curves such as 
Bezier curves and B-spline curves [7,8,9]. Despite its 
advantages of stability and efficiency, the subdivision 
method may encounter difficulties in interpolating offset 
curves, which are widely used in NC tool-path 
generation such as profiling and contour machining. The 
difficulties stem from the fact that the convex hull 
property may not be valid for the offset curves and it is 
hard to estimate their chordal deviations.   

In high accuracy machining, it is important to ensure that 
the interpolation error is within a given tolerance [5,6]. 
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In this paper, explicit solutions are proposed to calculate 
the exact chordal deviations of cubic free-form curves 
and their offset curves. Instead of being approximated, 
the choral deviation can be calculated explicitly by 
solving polynomial functions. In this paper, the most 
common cubic free-form curves are used for formulation 
and illustration.  

The remainder of this paper is organized as follows. In 
Section 2, the maximum error conditions of curve 
interpolation are discussed. Section 3 presents the 
explicit solutions for evaluating the chordal deviation of 
non-rational free-form curves, including 2D planar 
curves and 3D spatial curves. In Section 4, the explicit 
solution of finding the chordal deviation of offset curves 
from planar non-rational free-form curves is discussed. 
Section 5 presents the solutions of computing the 
chordal deviation of planar NURBS curves and offset 
curves. Adaptive interpolation method is discussed in 
Section 6. Practical examples are presented in Section 7, 
followed by the concluding remarks in Section 8.   
 
2. MAXIMUM ERROR CONDITIONS OF CURVE 

INTERPOLATION 

 
As shown in Figure 2, an interpolating linear segment 

1+iiPP  passes through two points )( ii trP =  and 

)( 11 ++ = ii trP  on a curve )(tr . For any given point on 

the curve )(tr , let )(tQ  be the projected point on the 

linear segment 1+iiPP , i.e., )()( tt rQ  is perpendicular to 

1+iiPP . As shown in Figure 2, )(th  is the error vector 

from the point )(tQ  to the correspondent point )(tr  on 

the curve. Its magnitude | )(th | denotes the 

interpolation error between a curve point )(tr  and the 

linear segment 1+iiPP , where the parameter t of r(t) 

should be within the interval 1+≤≤ ii ttt . As shown in 

Figure 2, the error vector )(th  is defined as follows: 

 
)()()( ttt Qrh −=   

EEPrPr }])({[])([ ⋅−−−= ii tt      (1) 

 

where E  is the unit chord vector defined as 
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1 . The maximum curve interpolation error 

max)(th  occurs if the following maximum chordal error 

conditions are satisfied:  
 

0)()( =⋅ tt hr&   and 0)( ≠th        (2) 

 
Equation (2) means that the maximal curve interpolation 

error max)(th  exists when the tangential vector )(tr&  

and the error vector )(th  are perpendicular to each 

other, as shown in Figure 2. Equation (2) also shows 
that, without losing generality, the non-trivial solution 

exists when the error | )(th | is not zero, i.e., 0)( ≠th .  
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Fig. 2. Maximum error for curve interpolation 
 
3. CHORDAL DEVIATION OF NON-RATIONAL 

FREE-FORM CURVES  

 

A cubic non-rational free-form curve )(tr  can be 

represented by a polynomial function as follows: 
 

3
3210

2)( tttt aaaar +++=      (3) 

 

where 3,2,1,0, =iia , are coefficient vectors. The 

coefficients 3,2,1,0, =iia , can be calculated from the 

control points of Bezier curves and B-spline curves. 
Combine Equation (1) and (3),one can get the following: 
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Since the interpolation linear segment passes through 

points )( itr  and )( 1+itr , 0)()( 1 == +ii tt hh . )(th  can 

also be represented as follows: 
 

))()(()( 011 ββh +−−= + tttttt ii     (5) 

 

where 1β  and 0β  are coefficient vectors to be 

determined. By comparing Equation (4) with Equation 
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(5), we can find the coefficient vectors 1β  and 0β  

shown as follows: 

( )EEaaβ ⋅−= 331     (6) 

 

( ) ( )[ ]
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22

3310 ii tt
    (7) 

Combine Equations (5) and (2) 

 

( ) 0)(01 =⋅+ tt rββ &     (8) 

 
Combining Equations (3) and (8), a three-degree 
polynomial function is obtained as follows:  
 

( ) ( )
( ) 02

323

102011

2

3021

3

31

=⋅+⋅+⋅+

⋅+⋅+⋅

aβaβaβ

aβaβaβ

t

tt
    (9) 

 
Equation (9) is a key function to find the maximum 

curve interpolation error max)(th . Detailed procedures 

of solving the remaining three roots are described in 
[11].   

   

)(
i
tr

)( 1+itr

o
E

)(t
o
r&

)( t
o
h

)(tr

)(t
o
r

)( i
o tr

)(
1+i

o
tr

)(tr&

 

Fig. 3. A planar offset curve 

 
4. CHORDAL DEVIATION OF OFFSET CURVES 

FROM PLANAR NON-RATIONAL FREE-FORM 

CURVES 

 
In NC machining, offset curves are frequently used for 
profiling and contour machining. To ensure machining 
accuracy, it is important to calculate the chordal 
deviation of interpolating offset curves. Let n  be the 

principal normal unit vector of a parametric curve )(tr , 

respectively. For a 2D planar curve, n&  can be 
represented as follows:  
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where κ  is the curvature of a point on the curve )(tr . 

As shown in Figure 3, )(tor  is the offset of a planar 

curve )(tr . The offset curve )(tor  can be defined as 

follows: 
 

nrr ⋅+= ltto )()(  (11) 

 

where l  is a constant offset distance. Differentiating 

Equation (11) and using n&  of Equation (10), one has 
the following:  
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For an offset curve )(tor , Equation (12) indicates that 

the tangent vector )(tor&  of an offset curve has the same 

direction with the tangent vector )(tr&  of the original 

curve )(tr . As shown in Figure 3, )()( 1+i
o

i
o tt rr  is an 

interpolating linear segment of the offset curve )(tor . 

o
E  is the unit vector of )()( 1+i

o
i

o tt rr  and )(toh  is the 

error vector from )(tor  to )()( 1+i
o

i
o tt rr , as shown in 

Figure 3. Since the error vector )(toh  is perpendicular 

to the vector 
o
E , one can find the following relationship:  

 

0)( =⋅ oo t Eh   (13) 

According to Equation (2), the maximal error max)(toh  

of the offset curve )(tor  exists if the following condition 

is satisfied: 

0)()( =⋅ tt oo
hr&  (14) 

Since )(tr  and )(tor  are planar curves, )(toh  can be 

represented as follows: 
 

oo tt Ωh )()( ψ=  (15) 
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where )(tψ  is the magnitude of an error vector )(toh , 

o

o
o

EN

EN
Ω

×

×
=  is the unit error vector perpendicular to 

the interpolating chord vector 
o
E , and N  is the unit 

normal vector of the plane on which the curve )(tr  lies. 

In Equation (15), )(tψ  has non-zero value at the 

maximum error point. One can get the following 
relationship:  
 

0)(2)(3 12
2

3 =⋅+⋅+⋅ aΩaΩaΩ
ooo tt  (16) 

 
Equation (16) has at most two roots and the one with 

larger error )(toh  is selected as the maximal error 

max)(toh  of the offset curve )(tor .  

 

5. CHORDAL DEVIATION OF PLANAR NURBS 

CURVES  

In the previous section, the explicit solution for finding 
the chordal deviation errors of interpolating non-rational 
cubic free-from curves is discussed, for example, Bezier 
curves and B-spline curve. Besides non-rational free-
from curves, NURBS curves are also widely used in 
CAD/CAM systems. This section discusses the chordal 
deviation for interpolating cubic NURBS curves. A cubic 
NURBS curve is usually represented as follows [6]: 
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where iV  are control points; iw  are the correspondent 

weights for the control points iV . )(3 tNi  are B-spline 

basis functions. Define two polynomial functions )(tA  

and )(tB  shown as follows: 
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where the coefficient vectors 3,2,1,0, =iia , can be 

evaluated from Equations (17); the coefficient 

3,2,1,0, =ibi , can be evaluated by the similar 

procedure for ia  except that the weights iw  are used 

instead of control points iiwV  in Equation (18). 

Therefore, a NURBS curve )(tr  can be represented as: 
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According to Equation (2), the maximal chordal 

deviation max)(th  occurs at: 
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Usually 0)( ≠tB  for NURBS curves, so Equation (21) 

can be simplified as: 

0)]()()[()]()()[( =⋅−⋅ tttBtttB hAhA &&  (22) 

Similar to the discussion of non-rational free-form 

curves, for a planar NURBS curve, )(th  can be 

represented as follows (see Figure 2): 

Ωh )()( tt ω=  (23) 

where )(tω  is the magnitude of an error vector )(th ; 

EN

EN
Ω

×
×

=  is the unit error vector perpendicular to the 

interpolating chord vector E ; N  is the unit normal 

vector of the plane on which the curve )(tr  lies. 

Substituting )(th  into Equation (22) yields: 

{ } 0])()[(])()[()( =⋅−⋅ ΩAΩA ttBttBt &&ω   (24) 

The root of 0)( =tω  cannot be for the maximal error; 

otherwise 0)( =th  and the condition of Equation (2) is 
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violated. Therefore, Equation (24) can be simplified as 
follows:  

0])()[(])()[( =⋅−⋅ ΩAΩA ttBttB &&  (25) 

The derivatives )(tA&  and )(tB&  can easily be computed 

from Equations (18) and (19). Substituting )(tA , )(tB , 

)(tA&  and )(tB&  into Equation (25), the following 

equation can be obtained: 
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Equation (26) is a quartic polynomial function, which 

can be solved explicitly. At most four roots of 
*

jt , 4≤j , 

can be found in Equation (26). The maximal chordal 

deviation max)(th  of a planar NURBS curve occurs at 

the root 
*

jt  that has the largest error )( *

jth . 

For 3D spatial NURBS curves, the error vector )(th  no 

longer has the constant orientation as the error vector of 
a 2D planar curve does. The function to find the 
parameters for the maximal chordal deviation is usually 
higher than four-degree. According to Abel theory, the 
general polynomial equations of degree higher than four 
cannot be solved by purely algebraic methods [10]. 
Some conservative estimation method using convex hull 
property can be used for estimating the chordal 
deviation of the 3D spatial NURBS curves [7]. 

Similar to the discussion in Section 4, the chordal 
deviation of a planar NURBS offset curve can be 
calculated. To find the maximal error parameter of the 
NURBS offset curve, the equation similar to Equation 
(26) can be deducted as follows: 
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Equations (28) and (29) are similar to Equations (26) 

and (27) except that Ω  is replaced by 
oΩ . The 

procedures to solve Equation (28) are the same as those 
for Equation (26).  

 

6. ADAPTIVE CURVE INTERPOLATION  

In an interpolation process, a sequence of linear 

segments is generated to interpolate a curve )(tr  under 

a given tolerance τ . Let )( itr  be the start point of the 

current interpolation segment on a curve )(tr . An 

adaptive interpolation method is proposed for finding 

the next interpolation point )()( 1 ttt ii Δ+=+ rr  

satisfying the following condition: 

( ) τ≤Δ+ )()( ttt ii rrh  (30) 

where tΔ  is the incremental parameter value from 

current parameter it ;  ( ))()( ttt ii Δ+rrh  is the chordal 

deviation of the interpolating segment )()( ttt ii Δ+rr  as 

discussed in the previous sections. Let ]1,0[∈µ  be a 

variation ratio for controlling the chordal deviation. 
Usually, to minimize the number of interpolation 
segments, a good interpolation method keeps the 
chordal deviation close to the interpolation tolerance τ . 

By combining the variation ratio µ , Equation (30) is 

converted to the equation shown as follows: 

( ) ( )[ ]ττµ ,1)()( −∈Δ+ ttt ii rrh   (31) 

When µ  has a small value, the chordal deviation 

( ))()( ttt ii Δ+rrh  is close enough to the given tolerance 

τ  that the number of interpolation segments can be 

minimized. However, the incremental parameter tΔ  
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usually cannot be found explicitly in Equation (31). It is 

noticed that the value τ
µ
)

2
1( −  is in the middle of 

( )[ ]ττµ ,1− . To find the incremental parameter tΔ  in 

Equation (31), an interpolation error function ( )tf Δ  is 

defined as follows: 

( ) ( ) 0)
2

1()()( =−−Δ+≡Δ τ
µ

tttf iit rrh  (32) 

Since ( )tf Δ  usually cannot be solved explicitly, a 

numerical secant method [10] can be used in this paper 
to iteratively search for the roots of Equation (32) until 
the following condition is satisfied:  

( )
22

µτµτ
≤Δ≤− tf  (33) 

By combining Equations (32) and (33), the chordal 

deviation ( ))()( ttt ii Δ+rrh  satisfies the condition in 

Equation (31) and the interpolation accuracy can be 
guaranteed. Using the discussed secant searching 
method, the adaptive interpolation algorithm for non-
rational curves is detailed in the following Algorithm I. 
Similar algorithms can also easily be applied to NURBS 
curves and planar offset curves.  

Algorithm I: Adaptive interpolation method 

Input: 

Polynomial Curve coefficients: 0a , 1a , 2a , 3a  

Interpolation tolerance: τ  

Variation ratio: µ  

Output: 

The interpolation points { })( itr  that satisfy the 

interpolation tolerance τ . 

Begin 

Evaluate the interpolation starting point at 

parameter 0=it  and output the starting point 

)0(r . 

While { Interpolation starting parameter 1<it } 

Compute the maximal chordal deviation 
parameter by Equations (9) and its 

correspondent error ))1()(( rrh it  .  

If }))1()(({ τ≤rrh it  

Output the ending point )1(r  and 

terminate the while loop. 
End if 

Estimate the initial 0tΔ  by the curvature 

information [3]. 
Compute the chordal deviation 

( ))()( 0ttt ii Δ+rrh  by Equations (9).  

Compute )( 0tf Δ  by Equation (32). 

Find *tΔ  by using the secant searching method 

that it can satisfy Equation (33). 

Output )( *tti Δ+r  as a new interpolating 

point. 
Update the interpolation starting parameter as 

*: ttt ii Δ+= .  

   End while 

End.   

 

 
(a) A computer mouse model 

C*

Contours

Offset curves

 
(b) The contours and their offset curves 

Fig. 4. A computer mouse model and its contours for 
roughing 

Algorithm I starts with the interpolation point located at 

the start point of the curve )(tr . After finding the 

incremental parameter tΔ , the parameter of the next 

point )( 1+itr  is set to ttt ii Δ+=+1  and a new searching 

iteration continues until the end point of the curve is 
reached. The following section shows some illustrative 
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examples of using the proposed method for free-form 
curves interpolation and the applications for NC 
machining. 

7. COMPUTER IMPLEMENTATION AND 

EXAMPLES 

 
The proposed method and algorithm have been 
implemented to evaluate the performance of the 
proposed adaptive interpolation method. We also 
implemented the conventional subdivision method using 
convex hull property for comparison [8, 12].   
 
Figure 4(a) shows an example part of a computer 
mouse. The size of the part surface is about 

36150130 ×× . To machine the example part, an 

endmill with size of 5.0 is used and the interpolation 
tolerance is set to 001.0=τ . Shown in Figure 4(b) are 

the contours and their offset curves for the roughing 

process. A contour *C  of Figure 4(b) is used as an 

illustrative example to demonstrate the actual 
interpolation errors. The computation process of the 
adaptive interpolation method takes a few milli-seconds 
to compute the offset curve of each slice. The actual 
interpolation errors are scaled by 4,000 time, as shown 
in Figures 5(a) and 5(b) for the traditional subdivision 
method and the proposed adaptive interpolation 

method, respectively. In Figure 5(a), notice that some of 
the interpolation errors from the traditional subdivision 
method are larger than the given tolerance τ . On the 

other hand, the proposed adaptive interpolation method 
keeps the interpolation error within the tolerance τ , as 

shown in Figure 5(b).  
 
8. CONCLUSIONS 

 
This paper presents a method to find the maximum 
errors for interpolating free-form curves and the offset 
curves. Explicit solutions are presented for calculating the 
chordal deviations. Compared with the conventional 
subdivision and linear interpolation methods, the 
proposed interpolation method can greatly improve the 
interpolation accuracy and reduce the number of 
interpolation points of free-form curves and their offset 
curves.  The computation process of the interpolation 
method is also fast (taking a few milli-seconds) and 
stable. The developed techniques of chordal deviation 
evaluation can be used for curve interpolation and NC 
tool-path generation in CAD/CAM systems. In the future 
research, accurate circular approximation of free-form 
curves will be investigated. 
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Fig. 5. The interpolation errors for one roughing tool-path 
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