
 233

Precise Global Collision Detection in Multi-Axis NC-Machining

Oleg Ilushin1, Gershon Elber2, Dan Halperin3 and Ron Wein4

1Department of Applied Mathematics, Technion, olegi@tx.technion.ac.il
2Department of Computer Science, Technion, gershon@cs.technion.ac.il

3School of Computer Science, Tel Aviv University, danha@tau.ac.il
4School of Computer Science, Tel Aviv University, wein@tau.ac.il

ABSTRACT

We introduce a new approach to the problem of collision detection in multi-axis NC-machining.
Due to the directional nature (tool axis) of multi-axis NC-machining, space subdivision techniques
are adopted from ray-tracing algorithms and extended to suit the peculiarities of the problem in
hand. We exploit the axial-symmetry inherent in the tool's rotational motion to derive a highly
precise polygon-tool intersection algorithm which, combined with the proper data structure, also
yields efficient computation times. Other advantages of the proposed method is the separation of
the entire computation into a preprocessing stage that is executed only once, allowing more than
one toolpath to be efficiently verified thereafter, and the introduced ability to test for collisions
against arbitrary shaped tools such as flat-end or ball-end, or even test for interference with the tool
holder or other parts of the NC-machine.

Keywords: NC-machining, 5-axis machining, collision detection and verification, space
subdivision, ray tracing, lower envelopes.

1. INTRODUCTION

In recent years, evermore complex surfaces have
been evolving in various engineering processes and
designs, driving the demand for more efficient and
accurate machining of such surfaces [18]. 5-axis
machining offers many advantages over traditional 3-
axis machining, such as faster machining times, better
tool accessibility and improved surface finish. Yet, there
are still difficult geometric problems to solve in order to
take full advantage of 5-axis machining. One of the most
critical problems in machining sculptured surfaces is
collision detection and avoidance.

Research in the area of 5-axis machining has been
mostly focused on generating proper cutter toolpaths,
optimizing tool orientation (for maximal material
removal rates and minimal scallop heights), and solving
local interference problems (gouging). Verma [21] offers
an image-space approach to simulating multi-axis NC
milling machines that use a dexel-buffer structure for the
workpiece and tool representations, and simulates
material removal by boolean subtraction between the
two. In this representation a dexel is the basic volume
element represented by a rectangular box prolongated
along the positive z direction. Müller et al. [17] extend
the idea of dexel volumes to multi-dexel volumes. In this
approach more than one dexel model is used for
representation of a solid, with each model having
different dexel direction. In this manner the difficulty of

unequal sampling densities dependent on the slope of
the machined surface relative to the direction of the
dexels is overcome. In [7], Elber and Cohen derive the
boundaries of accessible (gouge-free) regions of a
freeform surface with respect to some given check
surface by projecting the check surface onto the given
surface along a given orientation field. Elber [8]
introduced a toolpath optimization method, in which he
classifies the surface into convex, concave and saddle-
like regions. As a result, applying a flat-end cutting tool
to convex regions and a ball-end tool for other regions
yields better material removal rates and smaller scallop
heights. At the same time this method guarantees
gouge-free milling. Yet another approach to the tool
orientation optimization was suggested by Lee et al. in
[15], where they search the configuration space for
optimal tilt and yaw angles of the tool in order to
minimize cusp heights in the resulting surface.

While some algorithms were developed to avoid
global collision between the tool and the machined part,
in 5-axis machining [23], [16] these methods do not
allow for a general form of a tool and assume a
cylindrical approximation for it. The first method [23]
utilizes convex hulls in order to quickly find the feasible
set of tool orientations, and in the case of a collision, a
correction vector is calculated in the direction opposite
to the surface normal vector, at the interfering point. In
[16], the collision detection is integrated into the
toolpath generation stage. Once collision is detected, the

 234

collision vector is derived from the center of collision
curve – the curve of intersection of the machined part
and the cylindrical approximation of the tool, in the
direction perpendicular to the tool axis. This is used later
to calculate the correction vector. [19] and [4] allow
more general representation of tool geometry for the
purpose of collision detection in 5-axis machining. They
use a point-cloud representation for the work piece, a
Constructive Solid Geometry (CSG) representation for
the tool and an efficient bounding volumes hierarchy,
thereby reducing the interference problem to simple
point inclusion queries. However, this representation
tends to lose efficiency and requires a substantial
amount of memory as the number of sampled points
increases, which is the case when one requires a good
approximation for the machined part. Moreover, these
methods do not handle interference between the tool
and other parts of the NC-machine, such as clamping
devices, the rotating table and the spindle. [5] offers a
toolpath verification method based on the sweep plane
algorithm. Parallel slices of the workpiece, the reference
part and the tool geometry are computed, with constant
intervals. The resulting geometry of the part being
machined is obtained by performing the intersection
between these slices. This method allows general tool
geometry and supports collision detection between the
workpiece and the tool, tool holder and fixtures. The
precision of such approach, however, depends on the
distance between the slices and the behavior of the
surface.

In this work, we aim to develop an efficient and
precise algorithm for global collision detection and
avoidance in a 5-axis machining context. We expect to
take into consideration not only the cutting tool and the
machined part, but also other parts of the NC-machine,
such as clamping devices and rotating table In addition,
we impose no restrictions on the shape of the tool. We
offer, for the first time to the best of our knowledge, to
take advantage of the inherent axis-symmetry of the
problem of multi-axis NC-machining.

The paper is organized as follows. In Section 2, we
define the problem of collision detection in multi-axis
machining and introduce our approach. Section 3 gives
some background on lower envelopes and ray tracing –
tools that we utilize in our algorithm. Section 3.1 and its
three subsections elaborate on the description of the
lower envelope construction algorithm. In Section 3.2,
we examine computer graphics rendering techniques
which we hereby adapt toward efficient extraction of a
set of potentially intersecting polygons. In Section 4, we
describe the data structure used in our algorithm.
Section 5 presents a fast tool-polygon interference
testing algorithm. Section 6 presents some experimental
results of our algorithm and finally, in Section 7, we give
concluding remarks and outline directions for extending
this work.

2. ALGORITHM OVERVIEW

The general collision detection problem can be
stated as follows:

Given a workpiece, a tool and the tool position and
orientation, detect and possibly correct any
interference, if exists, between the tool and the
workpiece or between other parts of the NC-
machine, such as the chuck and spindle, the
rotating table, clamping devices, etc.

In this work, we assume that the workpiece and the

parts of the NC-machine that are to be checked for
collision are given in a polygonal representation. As for
the tool, arbitrary polyline representation is allowed, as
will be shown.

At the preprocessing stage, a data structure will be
constructed, which we will refer to as the Line-Distance
Query (LDQ) data structure. For a given polygonal
model, the following operations should be efficiently
performed using the LDQ data structure, at runtime:

1. Given a cutter position and tool orientation (a ray),

find the set of polygons that are close to the tool by
computing, for example, their inclusion or
intersection with a bounding cylinder around the
tool. Alternatively, use a set of concentric cylinders
and cones that will closely approximate the tool, the
spindle and other rotating parts.

2. Given local small changes in the geometry of the
workpiece (due to the nature of the machining
process), tool position or tool orientation,
propagate these changes into the LDQ data
structure.

Once the preprocessing stage has been completed

and the LDQ data structure has been constructed, we
initiate the query, for the given cutting position and tool
orientation, and collect the set of polygons that are close
to the tool axis with respect to some approximation of
the tool mentioned above (such as bounding cones and
cylinders). These polygons may originate from the
workpiece as well as from the parts of the NC-machine
and serve as potential candidates for a precise
interference test with the cutting tool.

Given this potentially interfering set, we derive
planar hyperbolic segments which originate from the
radial projection of the triangles’ points around the tool’s
axis onto a plane, for each triangle in the set. These
hyperbolic segments are then tested for intersections
with the tool’s profile and all other rotating parts such as
the chucks and spindle. Such intersections will identify
the collision between the rotating parts of the NC-
machine and the workpiece or other stationary parts
such as a fixture or the base table. Alternatively, we
calculate the lower envelope of the radial projection of
all the polygons in the set with respect to the tool’s axis,
where the projection is onto a plane through this axis.

 235

The lower envelope is a planar contour, which is then
checked for intersection with the tool. We discuss the
advantages of each of these two possibilities in Section
5.

Note that even though the surfaces as well as the
tool profile are represented using linear functions
(polygons and polylines), the radial projection gives rise
to hyperbolic arcs as well (see Section 5 for details). Our
precise machinery can efficiently cope with second order
curves; see more details below.

Among the advantages of the presented method
are:

• The preprocessing stage needs to be
performed only once and is independent of the
toolpath (several toolpaths could be verified
without the need to rebuild the LDQ data
structure).

• A collision test is independent of the initial

orientation of the model. This dependency is a
significant drawback of many contemporary
voxel-based alternatives, which favor major
axes.

• The proposed approach is precise to within
machine precision.

• No restrictions are posed on the shape of the
tool and collision tests for all the rotating parts
of the NC-machine are supported.

Devising an efficient LDQ data structure is of great

importance in this approach and has a significant impact
on the algorithm. Among the possible choices one can
consider are an Oriented Bounding Box (OBB)
hierarchy or k-DOP, used in [19], [4].

3. BACKGROUND

In this section we briefly discuss two tools that will
serve us in our algorithm. In Section 3.1, the idea of a
lower envelope is presented whereas in Section 3.2,
optimization methods in computer graphics ray tracing
are considered.

3.1 Lower Envelopes

Lower envelopes are ubiquitous in computational
geometry and will be used here to speed up collision
detection queries for complex tools.

Definition:

Given a collection { }nCC K,1=C of bounded

planar x-monotone curves, which can be

viewed as univariate functions ()xCi defined

on an interval, the lower envelope of C,
denoted L(C), is the pointwise minimum of

these functions, () ()xCimin=CL , taken over

all functions defined at x.

Let us assume that our curves are well-behaved —
that is, two curves intersect at k points at most, where k
is a constant, or else they are considered to be
overlapping. We can then compute the planar
arrangement [12] A(C) of the curves in C, namely the
planar subdivision induced by C, whose complexity is

()2nO , and examine the unbounded face of this

arrangement. However, we could also compute the
lower envelope directly. The complexity of the lower

envelope is ()()nO k 2+λ , where ()nsλ is the maximum

length of a Davenport–Schinzel sequence [20] of n

elements with order s. For small values of s,
()
n
nsλ
 is an

extremely slowly growing function of n and the
complexity of the lower envelope is “almost” linear. For
example, if C contains just line segments, then k=1 and

() ()()nnOn αλ =3 , where)(nα is the inverse of

Ackermann’s function. In our case, we deal with line
segments and special hyperbolic segments, such that
each pair of curves may intersect at most twice, so the

complexity of the lower envelope is)2()()(
4

nnOn αλ =

(see [20] for more details). This suggests that we can do

much better than the)(2nO algorithm.

To do so, we use a divide-and-conquer approach.
Namely we divide C into two subsets of equal size,
compute the lower envelope of each half recursively and
finally merge the two envelopes. This algorithm clearly
runs in ()()nnO k log2+λ time. (A slightly faster but more

involved algorithm, which is also more difficult to
implement, is proposed by Hershberger [14].) Next we
describe the data structure we use to represent L(C) and
how it is constructed.

3.1.1 Constructing the Minimization Diagram

A natural representation of the lower envelope L(C)
is by a minimization diagram. By this we mean that,
given a collection C, we can subdivide the x-axis into
maximal intervals, such that the identity of the curve(s)
contributing to the lower envelope, above each point in
the interval is the same. Note that the curves are not
assumed to be in a general position (i.e., it is possible
that more than two curves in C intersect at a common
point, two (or more) arcs may overlap, etc.), so this
diagram must be carefully defined and constructed.

The minimization diagram M(C) consists of
minimization vertices and minimization edges (vertices
and edges for short). All the components are stored in a
doubly-linked list, where the vertices are sorted by their
increasing x-value, and each edge is stored between its
two end-vertices. Each vertex v is associated with a point
p(v), and each edge e stores a

 236

Fig. 1. The minimization diagram representing the lower envelope of a set of line segments. Vertices are represented as lightly
shaded circles and the list of segments associated with each minimization edge is shown in the rounded rectangles between
the vertices. Note the overlap between c2 and c3 and the representation of the vertical segment c7.

set ()eC of the curves that constitute the lower envelope

between the two end-vertices of the edge (it is also

possible that () φ=eC). See Fig. 1 for an illustration. To

construct the minimization diagram of a collection C we
use the following procedure:

1. Remove all vertical segments from C (we will

consider these segments only after we are
done with the rest). We denote the resulting set

by Ĉ .

2. If 1ˆ ≤C , the construction of the lower

envelope is trivial. In any other case:

• Partition the set into two subsets C1, C2 of
equal sizes.

• Execute step 2 on each of the subsets to
compute M(C1) and M(C2).

• Merge the two minimization diagrams by
simultaneous traversal on the two lists of
vertices.

3. Sort the vertical segments by their increasing x-

values and merge them with the diagram

()CM ˆ .

The complexity of step 1 is obviously linear and of

step 3,)log(nnO , while for step 2 the running time

obeys () () ()()nOnTnT k 22
2 ++= λ . Consequently, the

entire process takes ()()nnO k log2+λ .

3.1.2 The Lower Envelope Traits

We have developed a CGAL [1] package that
computes the lower envelope of a given set of curves,
represented as a minimization diagram, using the
algorithm given in the previous section. As CGAL
employs the generic programming approach (see [6] for

more details), the geometry involved in the algorithm is
entirely separated from its topological constructions.

This set of geometric predicates and constructions is
a subset of the geometric requirements needed by
CGAL’s arrangement package [9], [13], and should be
provided by a so-called traits class. Such a traits class is
used as a parameter for the arrangement template to
instantiate arrangements of curves of a specific type, and
can similarly be used to instantiate the lower-envelope
template.

Although the line segments and hyperbolic arcs we
have to deal with are a special case of conic arcs (see
[22] for more details), it is possible to simplify the
geometric predicates and constructions involved in the
implementation of the traits class if we use the special
structure of the hyperbolas we obtain in our case.

We are interested in segments of the upper portion
of canonical hyperbolas of the form:

022 =++− γβα xyx , (1)

which are defined by the x-coordinates x1 and x2 of the
segment’s endpoints. The endpoints of the hyperbolic
arc are given by ()ii yx , , where:

() γβα ++== iiii xxxCy 2 . (2)

Thus, the 5-tuple 21,,,, xxγβα completely characterizes

the canonical hyperbolic arc.
 We can see that the traits class for this family of

curves can be easily implemented using elementary
algebra, for example:

• Given two x-monotone arcs 21,,,, xxC γβα=

and 21,,,, xxC ′′′′′=′ γβα and their intersection

point p, we can conclude which curve is above
the other immediately to the right of p if we

 237

compare the two slopes or first-order
derivatives of the two curves. Thus, we have to

compare
()
()()pxC

px βα +2
 and

()
()()pxC

px

′
′+′ βα2
 .

• Given two x-monotone arcs 21,,,, xxC γβα=

and 21,,,, xxC ′′′′′=′ γβα , we can compute all

their intersection points by solving the
quadratic equation:

γβαγβα ′+′+′=++ xxxx 22 . (3)

Also note that no overlaps may occur between
C and C′ , unless, of course, the underlying
hyperbolas of the two hyperbolic arcs are the
same.

Recall that we need to support line segments as
well. This is quite simple as we can write the equation of

the underlying line baxy += of the segment as:

02 222 =++− babxyax . (4)

Thus we can represent the line segment by the

hyperbolic arc 21
22 ,,,2, xxbaba .

3.2 The Ray Tracing Connection
A very common task in computer graphics is rendering
of three-dimensional scenes. Ray tracing is one of the
most popular rendering techniques in use that can
produce high-quality realistic images; see for example
[11]. Ray tracing simulates camera photography by
shooting rays through each pixel in the image into the
scene and then tracing these rays recursively as they
intersect and interact with the geometry, in reflection and
refraction directions. Ray-object intersection calculation
is considered the most expensive operation in ray-
tracing. While theoretically each ray can intersect any
polygon in the scene, in practice rays typically intersect
only a small fraction of the geometry. So optimizations
are generally required. Among the ray-tracing
optimization schemes, Uniform Space Subdivision
(Uniform Grid) and Octrees are most frequently used;
see Fig. 2. These two techniques subdivide the object
space into cells or voxels, and in each voxel register the
information about the geometry that intersects it. These
optimizations significantly speed up the ray-tracing
process by traversing rays through the subdivision and
performing intersection calculations only with the
geometry inside the voxels along the ray path. Uniform
subdivision, as its name implies, subdivides the object
space uniformly in each of the x, y, and z directions and
is the easiest to compute. Linear traversal algorithms for
uniform subdivision are the three-dimensional versions
of the 2D line rasterization algorithm (DDA, see [10])
and are typically called 3D-DDA. The Octree scheme is
an adaptive scheme that exploits the scene’s geometry,

recursively subdividing those voxels that contain the
significant scene complexity, thus resulting, in general, in
fewer voxels than in Uniform subdivision. Therefore, this
method requires less memory and traversal steps. The
Octree approach, however, requires slightly more
complex preprocessing and traversal algorithms.

4. The LDQ Data Structure

In the process of NC-machining of a sculptured
surface, potential interference between the cutting tool
and the machined surface needs to be checked at least
at each cutter location along the toolpath. That is, for
each tool position and orientation we need to perform
an intersection test between the tool and the machined
part. If we consider the tool to be a cylinder of radius R,
the task will be to identify all the polygons of the
machined surface that interfere with the cylinder. A key
observation is the similarity of this tool interference
problem to the task in ray tracing of finding the polygons
that intersect the ray. Our NC-machining application
differs in the fact that now instead of a simple ray; we
have to consider a ray of a finite thickness, i.e., a
cylindrical one. Thus, optimization techniques for ray-
tracing algorithms could be applied to the problem in
hand with minor alterations.

Due to the fact that the surface that undergoes
machining changes in time, the Octree representation is
not our first choice for the data structure, since it will be
difficult to update. Hence, a uniform grid will better suit
our purpose. Nevertheless, as we aim to exploit the
advantages offered by the Octree representation, instead
of having a simple uniform grid, we use a hierarchy of
uniform grids for the LDQ,
doubling the grid’s resolution on each successive level;
see Fig. 3. If, for example, the initial resolution is 2 by 2
by 2, and the depth of the hierarchy is 4, then on the
lowest level we will be employing a grid with a
resolution of 16 by 16 by 16. This representation is
identical to a fully expanded Octree, with the
convenience of being able to use a simple 3D-DDA
traversal algorithm at each level. We denote this specific
data structure a HiGrid, short for a Hierarchical Grid.
The following is a key observation:

An intersection test of a polygon with a cylindrical
ray of radius R is equivalent to the intersection of a
simple ray with the 3D-offset of the polygon by
radius R.

Hence, in the initialization stage, we place a reference to
a polygon in a voxel if the polygon intersects the box
that is the offset of the voxel by R; see Fig. 4. Toward
this end, we utilize the fast box-triangle overlap testing
algorithm by Möller [3], which is based on the
Separating Axis Theorem for two polyhedra. Then, in
real time, we traverse the HiGrid using a simple ray,
collecting all the polygons inside

 238

(a) Uniform Grid

(b) Uniform Grid

Fig. 2. Ray tracing space subdivision schemes. Ray-object intersections are applied only to the
objects contained in the voxels along the ray (grey voxels).

the voxels visited by the ray. The result will be a set of
polygons that potentially interfere with the tool. When
traversing the HiGrid, we step down to the lower level
and continue the traversal of the grid with finer
resolution if the number of polygons in the current voxel
is greater than some predefined constant. To support
changes in the geometry and polygon removal, all
instances of every polygon in all the voxels in the HiGrid
are linked in a linear list. Hence, the HiGrid is an
efficient data structure that supports fast queries of
Potentially Interfering Polygons (PIP), given the tool
position and orientation and a radius R of the bounding
cylinder.

5. COLLISION DETECTION

In this work, we assume that the tool is given as a
polyline representing a tool’s profile to which we will
refer as the tool’s silhouette, and which lies in the first
quadrant of the yz-plane; see Fig. 5. A similar treatment
will apply to a tool whose profile contains quadratic or
higher order curves, which will require slightly more
intricate calculations.
We denote the canonical orientation of the tool as an
orientation with the cutter position set at the origin and
oriented along the positive z-direction. Let M be the
inverse transformation that brings the tool from its
current machining position back to the canonical
orientation. To test for PIP–tool interference, we first
apply M to each triangle from the PIP. We proceed by
radially projecting the mapped triangles around the z-
axis onto the yz-plane. This radial projection is the trace
that the triangle etches on the yz-plane (more precisely,

on the half-plane 0>y) when rotated around the z-axis.

Consider the line segment AB,),,(zyx aaaA = ,

),,(zyx bbbB = , rotated around the z-axis (see Fig. 6). The

trace of AB in the yz-plane is given by the explicit
quadratic equation that is derived by looking at the
distance between a point on the segment and the z-axis:

() () ()[]

() () ()[] ,1

1)(

2

2

2







 −+−

−
+







 −+−

−
=

yzyz
zz

xzxz
zz

bazazb
ab

bazazb
ab

zd

 (5)

where z changes continuously between ax and by.

Now consider a segment of the tool’s silhouette, ST,

()zy ssS ,,0= , ()zy ttT ,,0= . The squared distance from

point STP∈ and the z-axis for a prescribed value of z is

given by:

() () ()[]
2

2 1)(






 −+−

−
= yzyz

zz

tszszt
st

zδ . (6)

For the segment AB to intersect the segment ST of

the profile of the tool, the right-hand terms of (5) and (6)
must be equal. The comparison of these two terms
yields the following quadratic constraint for z:

()()
()()
()() ,0

22

222

2222

=+−

++−

++−

yx

yyxx

yx

ggeac

gfgfeabcz

ffeabz

 (7)

where

()
()
()

()
,1

,

,

,1

2

2

zz

yzzy

yy

zz

ab
e

ststc

tsb

st
a

−
=

−=

−=

−
=

()
()
()
().

,

,

,

zyzyy

zxzxx

yyy

xxx

abbag

abbag

baf

baf

−=

−=

−=

−=

By solving Equation (7) for each relevant tool silhouette
segment ST and verifying that none of the real roots, if
any, lies in a proper range, we can conclude that the
segment AB either does or does not intersect the tool.

Now given a triangle ABCΔ , one needs to identify

the closest points of ABCΔ to the z-axis for each value

of z.

 239

Fig. 3. Hierarchical grid levels. Ray traversal at each voxel continues to the lower levels of the grid hierarchy with finer
resolution, reducing, thereby, the number of polygons accumulated along the ray.

Fig. 4. Voxel offset by the tool radius R. Here a reference to

the polygon P will be placed in the original voxel since it
intersects the offset box.

There are several cases to handle; here we will
examine the most complicated one. Consider the
example depicted in Fig. 7. In this example we assume
that the triangle’s vertices, A, B, C, are in descending z-

order. Let Q be the plane containing ABCΔ and QN
r
 be

its normal. Then, for each value of z, the closest points

of Q to the z-axis will lie on the intersection between Q

and the plane R whose normal RN
r
 is given by

z×= QR NN
rr

, where ()1,0,0=z , and which contains the

z-axis. If R intersects ABCΔ , as in this example, then the

closest triangle’s points to the z-axis will lie on segments
AE, EF, FB and BC. Segments AE, FB and BC will give
rise to hyperbolic curves, while EF will generate a linear
curve. Otherwise, and depending on the order of the

triangle’s vertices, one or two to edges of ABCΔ will

form the set of the closest points to the z-axis.
Once the triangle is analyzed and the closest segments
are identified and extracted, Equation (5) is applied to
each segment. The resulting set of connected hyperbolic
arcs and/or line segments is, essentially, the lower
envelope of the radial projection of ABCΔ onto the yz-

plane.
We proceed and obtain the set of hyperbolic arcs

Fig. 5. The tool’s silhouette: a polyline representing the tool’s
profile.

Figure 6. Segment rotated around the z-axis.

y

R
R

P

x

y

z

d

()zyx aaaA ,,

()zyx bbbB ,,

z

 240

and/or line segments for all the triangles in the PIP. We
call this set the Hyperbolic Segments Set (HSS). To
complete the collision detection test, for the current tool
orientation, we have two alternatives.

The first option is the direct approach. In this
approach, each curve from the HSS is tested for
intersection with the tool’s silhouette. Binary search is
used on the tool’s silhouette segments, along the z-axis.
Because each test is performed by analytically solving
the quadratic Equation (7), this approach proves to be
efficient when the tool’s silhouette contains a small
number of segments.

The second approach takes advantage of the lower
envelope method described in Section 3.1. First
the lower envelope of all the curves from the HSS is

constructed in ()()nnO log4λ time, assuming HSS

consists of n curves. Thus, we have potentially reduced
the total number of hyperbolic segments to be tested
against the tool. Then, the tests for intersections between
this lower envelope and the tool’s silhouette are
performed by a simultaneous traversal over the lower
envelope and the tool’s silhouette along z and a
comparison between the two entities (we assume here
that the tool’s silhouette is weakly monotone in the z
direction). The last step is clearly linear in the complexity
of the envelope and the tool, making this approach
more attractive when very complex tool geometry is
used, and the tool’s silhouette consists of a large number
of segments. We compare these two above mentioned
approaches in Section 6.

6. RESULTS

The collision detection algorithm presented in this
paper was implemented in the IRIT modeling
environment [2]. The lower envelope calculations and
the comparison of the envelope with the tool profile are

carried out with recent extension to the CGAL
arrangement package [1]. In our tests, we used the Utah
teapot model and a wineglass model, both in a 5-axis
machining mode. Toolpaths were generated by sampling
iso-parametric curves along the model surfaces. For the
teapot model, we used a toolpath consisting of ~50000
contact points covering the teapot’s body with tool
orientations following the surface normals. A flat-end tool
with a tool holder of a larger radius was used for
machining the teapot. In the case of the wineglass
model, the toolpath was sampled along an offset surface,
having the orientation of the tool set so that its axis line
goes through a fixed point.

Fig. 8. Machining the body of the Utah teapot, using a flat-end
tool oriented along the surface normal. Only 1% of the contact
points are shown. Red dots and polygons indicate collisions at
the cutter locations and the interfering geometry, respectively.
The tool’s geometry is shown for one contact point with
interference.

A total of ~15000
contact points were
used. The tool that
machined the
interior of the wine
glass is a ball-end
tool. Fig. 8 and 9
show the output of
running the
algorithm on both
models. The teapot
and the wineglass
models consist of
12600 and 2700

polygons,
respectively. It took
about 64.2 seconds
and 5.01 seconds,
respectively, to test
for collisions on a
Pentium IV 2.4GHz
machine with
512MB of RAM,
setting the initial
resolution of the

HiGrid data structure to 2 and the depth to 4. Red

Fig. 7. The relevant points of 4 ABC contributing to the

trace lie on the segments AE , EF , FB , BC .

Fig. 9. Machining the interior of a
wineglass, using a ball-end tool
through a point. Only 3% of the
contact points are shown. Red
dots and polygons indicate
collisions at the cutter locations
and the interfering geometry,
respectively. The tool’s geometry
is shown for one contact point
with interference.

z

Q

R

A

B C

E

F

QN
r

RN
r

z

 241

polygons designate geometry that is overlapped by the
tool during the simulation process. Tab. 1 and 2 show

more detailed statistics for different

HiGrid depth 2 3 4

Preprocessing time 0.188 sec. 0.609 sec. 2.594 sec.

Total query time 133.7500 sec. 81.4070 sec. 61.6100 sec.

Avg. PIP extraction time per query 0.0005 sec. 0.0003 sec. 0.0003 sec.

Avg. intersections time per query 0.0020 sec. 0.0012 sec. 0.0009 sec.

Avg. num. of polys. per query 1376.4468 801.7224 574.2602

Avg. num. of intersections per query 18.3600 18.3600 18.3600

Tab. 1. The Utah teapot model with 12600 polygons and ~50000 contact points along the toolpath, using a flat-end tool with
a tool holder with a larger radius; see Fig. 8.

HiGrid depth 2 3 4

Preprocessing time 0.031 sec. 0.093 sec. 0.422 sec.

Total query time 9.5160 sec. 6.1260 sec. 4.5940 sec.

Avg. PIP extraction time per query 0.0001 sec. 0.0000 sec. 0.0000 sec.

Avg. intersections time per query 0.0005 sec. 0.0003 sec. 0.0002 sec.

Avg. num. of polys. per query 318.4795 192.1181 130.7773

Avg. num. of intersections per query 14.3005 14.3005 14.3005

Tab. 2. A wineglass model with 2700 polygons and ~15000 contact points along the toolpath, using a ball-end tool; see Fig.
9.

Number of segments in the tool’s silhouette 50 500 5000 50000

Direct Approach 0.2 0.4 2.4 20.2

Lower Envelope Approach 5.3 5.6 5.6 5.8

Tab. 3. The Utah teapot model with 12600 polygons and ~50000 contact points along the toolpath, using complex tool
geometry with the tool’s silhouette consisting of up to 50000 line segments. Average time per query (in milliseconds); see Fig.
10.

values of depth used for initializing the HiGrid data
structure for both models. The initial resolution of the
HiGrid was set to 2 in all test cases. Larger tool radius in
the case of the teapot model resulted in a longer
preprocessing time, as each polygon occupies more
voxels in the HiGrid data structure when considering a
bigger offset. Tab. 3 demonstrates the advantage of the
lower envelope approach when using very complex tool
geometry. Here, we tested the Utah teapot model with
the toolpath as in Tab. 1. A tool with complex geometry
was chosen (see Fig. 10), and tests with a tool’s
silhouette consisting of 50, 500, 5000 and 50000 line
segments were performed.

7. CONCLUSIONS

We have presented a new approach to the problem
of collision detection in multi-axis NC-machining which
yields, in the tests so far conducted, promising results.
Preprocessing can take up a significant amount of time
and memory, depending on the tool radius, model
resolution (number of polygons) and the HiGrid
resolution. Since this preprocessing is performed only
once and can be used for more than one toolpath
verification, it increases considerably the overall

performance by narrowing the calculations to a small
subset of the geometry. In the future, we intend
to compute an exit vector from the intersection data to
support collision avoidance as well as detection. Further,
extending the tool definition to allow its

Fig. 10. Complex tool geometry.

silhouette to contain quadratic or higher order curves is
on our research agenda. We expect to investigate the
direct use of polynomial and/or rational surfaces in the
near future. As already mentioned, the computation of

 242

the lower envelope and its comparison with the tool
profile are coded generically so that allowing for higher
degree curves will not affect the topological part of the
implementation and only local numerical procedures will
have to be modified. Furthermore, as long as the tool
profile consists of at most second-degree curves, our
software can already carry out the collision detection
precisely in the same way it is done for the polygonal
tool profile in the current work, being able to analytically
solve degree four polynomial constraints.

8. ACKNOLEDGEMENTS

This research was supported in part by the
Technion Vice President for Research Fund - New York
Metropolitan Research Fund and in part by the Israeli
Ministry of Science Grant No. 01-01-01509. This work
has also been supported in part by the IST Programmes
of the EU as Shared-cost RTD (FET Open) Projects
under Contract No IST-2000-26473 and No IST-2001-
39250 (MOVIE - Motion Planning in Virtual
Environments), by The Israel Science Foundation
founded by the Israel Academy of Sciences and
Humanities, and by the Hermann Minkowski – Minerva
Center for Geometry at Tel Aviv University.

9. REFERENCES
[1] The CGAL project homepage.

http://www.cgal.org/.
[2] Irit modeling environment. G. Elber, Department of

Computer Science, Technion, Haifa, Israel.
http://www.cs.technion.ac.il/~irit/.

[3] Tomas Akenine-Möller. Fast 3D triangle-box overlap
testing. Journal of Graphics Tools, 6(1):29–33,
2001.

[4] Mahadevan Balasubramaniam, Sanjay E. Sarma,
and Krzyztof Marciniak. Collision-free finishing
toolpaths from visibility data. Computer-Aided
Design, 35(4):359–374, April 2003.

[5] Erik L. J. Bohez, Nguyen Thi Hong Minh, Ben
Kiatsrithanakorn, Peeraphan Natasukon, Huang
Ruei-Yun, and Le Thanh Son. The stencil buffer
sweep plane algorithm for 5-axis CNC tool path
verification. Computer-Aided Design, 35(12):1129–
1142, October 2003.

[6] H. Brönnimann, L. Kettner, S. Schirra, and R.
Veltkamp. Applications of the generic programming
paradigm in the design of CGAL. In M. Jazayeri, R.
Loos, and D. Musser, editors, Generic
Programming—Proceedings of a Dagstuhl Seminar,
LNCS 1766. Springer Verlag, 2000.

[7] G. Elber and E. Cohen. A unified approach to
verification in 5-axis freeform milling environments.
Computer-Aided Design, 31(13):795–804,
November 1999.

[8] Gershon Elber. Freeform surface region optimization
for 3-axis and 5-axis milling. Computer-Aided
Design, 27(6):465–470, June 1995.

 [9] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan,
and E. Ezra. The design and implementation of
planar maps in CGAL. ACM Journal of
Experimental Algorithmics, 5, 2000. Special Issue,
selected papers of the Workshop on Algorithm
Engineering (WAE).

[10] D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Fundamentals of Interactive Computer
Graphics. Addison Wesley, second edition, 1990.

[11] Andrew S. Glassner. An Introduction to Ray
Tracing. Academic Press, second printing, 1990.

[12] D. Halperin. Arrangements. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 21,
pages 389–412. CRC Press LLC, Boca Raton, FL,
1997.

[13] Iddo Hanniel. The design and implementation of
planar arrangements of curves in CGAL. M.Sc.
thesis, Computer Science Department, Tel Aviv
University, Tel Aviv, Israel, 2000.

[14] J. Hershberger. Finding the upper envelope of n
line segments in O(n log n) time. Inform. Process.
Lett., 33:169–174, 1989.

[15] Cha-Soo Jun, Kyungduck Cha, and Yuan-Shin Lee.
Optimizing tool orientations for 5-axis machining by
configuration-space search method. Computer-
Aided Design, 35(6):549–566, May 2003.

[16] B. Lauwers, P. Dejonghe, and J. P. Kruth. Optimal
and collision free tool posture in five-axis machining
through the tight integration of tool path generation
and machine simulation. Computer-Aided Design,
35(5):421–432, April 2003.

[17] Heinrich Müller, Tobias Surmann, Marc Stautner,
Frank Albersmann, and Klaus Weinert. Online
sculpting and visualization of multi-dexel volumes.
In Proc. 8th ACM Sympos. on Solid Modeling and
applications, pages 258–261, 2003.

[18] Gustav J. Olling, Byoung K. Choi, and Robert B.
Jerard. Machining Imposible Shapes. Kluwer
Academic Publishers, November 1998.

[19] S. Sarma S. Ho and Y. Adachi. Real-time
interference analysis between a tool and an
environment. Computer-Aided Design, 33(13):935–
947, November 2001.

[20] M. Sharir and P. Agarwal. Davenport–Schinzel
Sequences and Their Geometric Applications.
Cambridge University Press, 1995.

[21] S. Verma. Simulation of numerically controlled
machines. M.Sc. thesis, Computer Science
Department, The University of Utah, September
1994.

[22] Ron Wein. High-level filtering for arrangements of
conic arcs. In Proc. ESA 2002, pages 884–895.
Springer-Verlag, 2002.

[23] Lee Yuan-Shin and Chang Tien-Chien. 2-phase
approach to global tool interference avoidance in 5-
axis machining. Computer-Aided Design,
27(10):715–729, October 1995.

