
 233 

Precise Global Collision Detection in Multi-Axis NC-Machining 
 

Oleg Ilushin1, Gershon Elber2, Dan Halperin3 and Ron Wein4 
 

1Department of Applied Mathematics, Technion, olegi@tx.technion.ac.il 
2Department of Computer Science, Technion, gershon@cs.technion.ac.il 

3School of Computer Science, Tel Aviv University, danha@tau.ac.il 
4School of Computer Science, Tel Aviv University, wein@tau.ac.il 

 
 

ABSTRACT 
 

We introduce a new approach to the problem of collision detection in multi-axis NC-machining. 
Due to the directional nature (tool axis) of multi-axis NC-machining, space subdivision techniques 
are adopted from ray-tracing algorithms and extended to suit the peculiarities of the problem in 
hand. We exploit the axial-symmetry inherent in the tool's rotational motion to derive a highly 
precise polygon-tool intersection algorithm which, combined with the proper data structure, also 
yields efficient computation times. Other advantages of the proposed method is the separation of 
the entire computation into a preprocessing stage that is executed only once, allowing more than 
one toolpath to be efficiently verified thereafter, and the introduced ability to test for collisions 
against arbitrary shaped tools such as flat-end or ball-end, or even test for interference with the tool 
holder or other parts of the NC-machine. 
 
Keywords: NC-machining, 5-axis machining, collision detection and verification, space 
subdivision, ray tracing, lower envelopes. 

 
 

1. INTRODUCTION 

In recent years, evermore complex surfaces have 
been evolving in various engineering processes and 
designs, driving the demand for more efficient and 
accurate machining of such surfaces [18]. 5-axis 
machining offers many advantages over traditional 3-
axis machining, such as faster machining times, better 
tool accessibility and improved surface finish. Yet, there 
are still difficult geometric problems to solve in order to 
take full advantage of 5-axis machining. One of the most 
critical problems in machining sculptured surfaces is 
collision detection and avoidance.  

Research in the area of 5-axis machining has been 
mostly focused on generating proper cutter toolpaths, 
optimizing tool orientation (for maximal material 
removal rates and minimal scallop heights), and solving 
local interference problems (gouging). Verma [21] offers 
an image-space approach to simulating multi-axis NC 
milling machines that use a dexel-buffer structure for the 
workpiece and tool representations, and simulates 
material removal by boolean subtraction between the 
two. In this representation a dexel is the basic volume 
element represented by a rectangular box prolongated 
along the positive z direction. Müller et al. [17] extend 
the idea of dexel volumes to multi-dexel volumes. In this 
approach more than one dexel model is used for 
representation of a solid, with each model having 
different dexel direction. In this manner the difficulty of 

unequal sampling densities dependent on the slope of 
the machined surface relative to the direction of the 
dexels is overcome. In [7], Elber and Cohen derive the 
boundaries of accessible (gouge-free) regions of a 
freeform surface with respect to some given check 
surface by projecting the check surface onto the given 
surface along a given orientation field. Elber [8] 
introduced a toolpath optimization method, in which he 
classifies the surface into convex, concave and saddle-
like regions. As a result, applying a flat-end cutting tool 
to convex regions and a ball-end tool for other regions 
yields better material removal rates and smaller scallop 
heights. At the same time this method guarantees 
gouge-free milling. Yet another approach to the tool 
orientation optimization was suggested by Lee et al. in 
[15], where they search the configuration space for 
optimal tilt and yaw angles of the tool in order to 
minimize cusp heights in the resulting surface.  

While some algorithms were developed to avoid 
global collision between the tool and the machined part, 
in 5-axis machining [23], [16] these methods do not 
allow for a general form of a tool and assume a 
cylindrical approximation for it. The first method [23] 
utilizes convex hulls in order to quickly find the feasible 
set of tool orientations, and in the case of a collision, a 
correction vector is calculated in the direction opposite 
to the surface normal vector, at the interfering point. In 
[16], the collision detection is integrated into the 
toolpath generation stage. Once collision is detected, the 
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collision vector is derived from the center of collision 
curve – the curve of intersection of the machined part 
and the cylindrical approximation of the tool, in the 
direction perpendicular to the tool axis. This is used later 
to calculate the correction vector. [19] and [4] allow 
more general representation of tool geometry for the 
purpose of collision detection in 5-axis machining. They 
use a point-cloud representation for the work piece, a 
Constructive Solid Geometry (CSG) representation for 
the tool and an efficient bounding volumes hierarchy, 
thereby reducing the interference problem to simple 
point inclusion queries. However, this representation 
tends to lose efficiency and requires a substantial 
amount of memory as the number of sampled points 
increases, which is the case when one requires a good 
approximation for the machined part. Moreover, these 
methods do not handle interference between the tool 
and other parts of the NC-machine, such as clamping 
devices, the rotating table and the spindle. [5] offers a 
toolpath verification method based on the sweep plane 
algorithm. Parallel slices of the workpiece, the reference 
part and the tool geometry are computed, with constant 
intervals. The resulting geometry of the part being 
machined is obtained by performing the intersection 
between these slices. This method allows general tool 
geometry and supports collision detection between the 
workpiece and the tool, tool holder and fixtures. The 
precision of such approach, however, depends on the 
distance between the slices and the behavior of the 
surface. 

In this work, we aim to develop an efficient and 
precise algorithm for global collision detection and 
avoidance in a 5-axis machining context. We expect to 
take into consideration not only the cutting tool and the 
machined part, but also other parts of the NC-machine, 
such as clamping devices and rotating table In addition, 
we impose no restrictions on the shape of the tool. We 
offer, for the first time to the best of our knowledge, to 
take advantage of the inherent axis-symmetry of the 
problem of multi-axis NC-machining. 

The paper is organized as follows. In Section 2, we 
define the problem of collision detection in multi-axis 
machining and introduce our approach. Section 3 gives 
some background on lower envelopes and ray tracing – 
tools that we utilize in our algorithm. Section 3.1 and its 
three subsections elaborate on the description of the 
lower envelope construction algorithm. In Section 3.2, 
we examine computer graphics rendering techniques 
which we hereby adapt toward efficient extraction of a 
set of potentially intersecting polygons. In Section 4, we 
describe the data structure used in our algorithm. 
Section 5 presents a fast tool-polygon interference 
testing algorithm. Section 6 presents some experimental 
results of our algorithm and finally, in Section 7, we give 
concluding remarks and outline directions for extending 
this work. 
  
2. ALGORITHM OVERVIEW 

The general collision detection problem can be 
stated as follows: 
 

Given a workpiece, a tool and the tool position and 
orientation, detect and possibly correct any 
interference, if exists, between the tool and the 
workpiece or between other parts of the NC-
machine, such as the chuck and spindle, the 
rotating table, clamping devices, etc.  

 
In this work, we assume that the workpiece and the 

parts of the NC-machine that are to be checked for 
collision are given in a polygonal representation. As for 
the tool, arbitrary polyline representation is allowed, as 
will be shown.  

At the preprocessing stage, a data structure will be 
constructed, which we will refer to as the Line-Distance 
Query (LDQ) data structure. For a given polygonal 
model, the following operations should be efficiently 
performed using the LDQ data structure, at runtime: 

 
1. Given a cutter position and tool orientation (a ray), 

find the set of polygons that are close to the tool by 
computing, for example, their inclusion or 
intersection with a bounding cylinder around the 
tool. Alternatively, use a set of concentric cylinders 
and cones that will closely approximate the tool, the 
spindle and other rotating parts.  
 

2. Given local small changes in the geometry of the 
workpiece (due to the nature of the machining 
process), tool position or tool orientation, 
propagate these changes into the LDQ data 
structure.  

 
Once the preprocessing stage has been completed 

and the LDQ data structure has been constructed, we 
initiate the query, for the given cutting position and tool 
orientation, and collect the set of polygons that are close 
to the tool axis with respect to some approximation of 
the tool mentioned above (such as bounding cones and 
cylinders). These polygons may originate from the 
workpiece as well as from the parts of the NC-machine 
and serve as potential candidates for a precise 
interference test with the cutting tool.  

Given this potentially interfering set, we derive 
planar hyperbolic segments which originate from the 
radial projection of the triangles’ points around the tool’s 
axis onto a plane, for each triangle in the set. These 
hyperbolic segments are then tested for intersections 
with the tool’s profile and all other rotating parts such as 
the chucks and spindle. Such intersections will identify 
the collision between the rotating parts of the NC-
machine and the workpiece or other stationary parts 
such as a fixture or the base table. Alternatively, we 
calculate the lower envelope of the radial projection of 
all the polygons in the set with respect to the tool’s axis, 
where the projection is onto a plane through this axis. 
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The lower envelope is a planar contour, which is then 
checked for intersection with the tool. We discuss the 
advantages of each of these two possibilities in Section 
5. 

Note that even though the surfaces as well as the 
tool profile are represented using linear functions 
(polygons and polylines), the radial projection gives rise 
to hyperbolic arcs as well (see Section 5 for details). Our 
precise machinery can efficiently cope with second order 
curves; see more details below. 

Among the advantages of the presented method 
are: 

• The preprocessing stage needs to be 
performed only once and is independent of the 
toolpath (several toolpaths could be verified 
without the need to rebuild the LDQ data 
structure). 

 
• A collision test is independent of the initial 

orientation of the model. This dependency is a 
significant drawback of many contemporary 
voxel-based alternatives, which favor major 
axes. 

 

• The proposed approach is precise to within 
machine precision. 

 

• No restrictions are posed on the shape of the  
tool and collision tests for all the rotating parts 
of the NC-machine are supported. 

 
Devising an efficient LDQ data structure is of great 

importance in this approach and has a significant impact 
on the algorithm. Among the possible choices one can 
consider are an Oriented Bounding Box (OBB) 
hierarchy or k-DOP, used in [19], [4]. 
 
3. BACKGROUND 

In this section we briefly discuss two tools that will 
serve us in our algorithm. In Section 3.1, the idea of a 
lower envelope is presented whereas in Section 3.2, 
optimization methods in computer graphics ray tracing 
are considered. 
 
3.1 Lower Envelopes 

Lower envelopes are ubiquitous in computational 
geometry and will be used here to speed up collision 
detection queries for complex tools.  

 
Definition: 

 

Given a collection { }nCC K,1=C  of  bounded 

planar x-monotone curves, which can be 

viewed as univariate functions ( )xCi  defined 

on an interval, the lower envelope of C, 
denoted L(C), is the pointwise minimum of 

these functions, ( ) ( )xCimin=CL , taken over 

all functions defined at x.  
 

Let us assume that our curves are well-behaved — 
that is, two curves intersect at k points at most, where k 
is a constant, or else they are considered to be 
overlapping. We can then compute the planar 
arrangement [12] A(C)   of the curves in C, namely the 
planar subdivision induced by C, whose complexity is 

( )2nO , and examine the unbounded face of this 

arrangement. However, we could also compute the 
lower envelope directly. The complexity of the lower 

envelope is ( )( )nO k 2+λ , where ( )nsλ  is the maximum 

length of a Davenport–Schinzel sequence [20] of n 

elements with order s. For small values of s, 
( )
n
nsλ
 is an 

extremely slowly growing function of n and the 
complexity of the lower envelope is “almost” linear. For 
example, if C contains just line segments, then k=1 and 

( ) ( )( )nnOn αλ =3 , where )(nα  is the inverse of 

Ackermann’s function. In our case, we deal with line 
segments and special hyperbolic segments, such that 
each pair of curves may intersect at most twice, so the 

complexity of the lower envelope is )2()( )(
4

nnOn αλ =  

(see [20] for more details). This suggests that we can do 

much better than the )( 2nO  algorithm. 

To do so, we use a divide-and-conquer approach. 
Namely we divide C into two subsets of equal size, 
compute the lower envelope of each half recursively and 
finally merge the two envelopes. This algorithm clearly 
runs in ( )( )nnO k log2+λ  time. (A slightly faster but more 

involved algorithm, which is also more difficult to 
implement, is proposed by Hershberger [14].) Next we 
describe the data structure we use to represent L(C) and 
how it is constructed.  
 
3.1.1 Constructing the Minimization Diagram 

A natural representation of the lower envelope L(C) 
is by a minimization diagram. By this we mean that, 
given a collection C, we can subdivide the x-axis into 
maximal intervals, such that the identity of the curve(s) 
contributing to the lower envelope, above each point in 
the interval is the same. Note that the curves are not 
assumed to be in a general position (i.e., it is possible 
that more than two curves in C intersect at a common 
point, two (or more) arcs may overlap, etc.), so this 
diagram must be carefully defined and constructed. 

The minimization diagram M(C) consists of 
minimization vertices and minimization edges (vertices 
and edges for short). All the components are stored in a 
doubly-linked list, where the vertices are sorted by their 
increasing x-value, and each edge is stored between its 
two end-vertices. Each vertex v is associated with a point  
p(v), and each edge e  stores a  
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Fig. 1. The minimization diagram representing the lower envelope of a set of line segments. Vertices are represented as lightly 
shaded circles and the list of segments associated with each minimization edge is shown in the rounded rectangles between 
the vertices. Note the overlap between c2 and c3 and the representation of the vertical segment c7. 

set ( )eC  of the curves that constitute the lower envelope 

between the two end-vertices of the edge (it is also 

possible that ( ) φ=eC ). See Fig. 1 for an illustration. To 

construct the minimization diagram of a collection C we 
use the following procedure: 

 
1. Remove all vertical segments from C (we will 

consider these segments only after we are 
done with the rest). We denote the resulting set 

by Ĉ . 

2. If 1ˆ ≤C , the construction of the lower 

envelope is trivial. In any other case: 
 

• Partition the set into two subsets C1, C2 of 
equal sizes. 

• Execute step 2 on each of the subsets to 
compute M(C1) and M(C2). 

• Merge the two minimization diagrams by 
simultaneous traversal on the two lists of 
vertices.  

 
3. Sort the vertical segments by their increasing x-

values and merge them with the diagram 

( )CM ˆ . 

 
The complexity of step 1 is obviously linear and of 

step 3, )log( nnO , while for step 2 the running time 

obeys ( ) ( ) ( )( )nOnTnT k 22
2 ++= λ . Consequently, the 

entire process takes ( )( )nnO k log2+λ . 

 
3.1.2 The Lower Envelope Traits 

We have developed a CGAL [1] package that 
computes the lower envelope of a given set of curves, 
represented as a minimization diagram, using the 
algorithm given in the previous section. As CGAL 
employs the generic programming approach (see [6] for 

more details), the geometry involved in the algorithm is 
entirely separated from its topological constructions. 

This set of geometric predicates and constructions is 
a subset of the geometric requirements needed by 
CGAL’s arrangement package [9], [13], and should be 
provided by a so-called traits class. Such a traits class is 
used as a parameter for the arrangement template to 
instantiate arrangements of curves of a specific type, and 
can similarly be used to instantiate the lower-envelope 
template. 

Although the line segments and hyperbolic arcs we 
have to deal with are a special case of conic arcs (see 
[22] for more details), it is possible to simplify the 
geometric predicates and constructions involved in the 
implementation of the traits class if we use the special 
structure of the hyperbolas we obtain in our case. 

We are interested in segments of the upper portion 
of canonical hyperbolas of the form: 

 

022 =++− γβα xyx ,                                           (1) 

 
which are defined by the x-coordinates x1 and x2 of the 
segment’s endpoints. The endpoints of the hyperbolic 
arc are given by ( )ii yx , , where: 

 

( ) γβα ++== iiii xxxCy 2 .                                  (2) 

 
Thus, the 5-tuple 21,,,, xxγβα  completely characterizes 

the canonical hyperbolic arc. 
 We can see that the traits class for this family of 

curves can be easily implemented using elementary 
algebra, for example: 
 

• Given two x-monotone arcs 21,,,, xxC γβα=  

and 21,,,, xxC ′′′′′=′ γβα  and their intersection 

point p, we can conclude which curve is above 
the other immediately to the right of p if we 
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compare the two slopes or first-order 
derivatives of the two curves. Thus, we have to 

compare 
( )
( )( )pxC

px βα +2
 and 

( )
( )( )pxC

px

′
′+′ βα2
 . 

• Given two x-monotone arcs 21,,,, xxC γβα=  

and 21,,,, xxC ′′′′′=′ γβα , we can compute all 

their intersection points by solving the 
quadratic equation: 

 

γβαγβα ′+′+′=++ xxxx 22 .                         (3) 

 
Also note that no overlaps may occur between 
C and C′ , unless, of course, the underlying 
hyperbolas of the two hyperbolic arcs are the 
same. 
 

Recall that we need to support line segments as 
well. This is quite simple as we can write the equation of 

the underlying line baxy +=  of the segment as: 

 

02 222 =++− babxyax .                                       (4) 

 
Thus we can represent the line segment by the 

hyperbolic arc 21
22 ,,,2, xxbaba . 

 
3.2 The Ray Tracing Connection 
A very common task in computer graphics is rendering 
of three-dimensional scenes. Ray tracing is one of the 
most popular rendering techniques in use that can 
produce high-quality realistic images; see for example 
[11]. Ray tracing simulates camera photography by 
shooting rays through each pixel in the image into the 
scene and then tracing these rays recursively as they 
intersect and interact with the geometry, in reflection and 
refraction directions. Ray-object intersection calculation 
is considered the most expensive operation in ray-
tracing. While theoretically each ray can intersect any 
polygon in the scene, in practice rays typically intersect 
only a small fraction of the geometry. So optimizations 
are generally required. Among the ray-tracing 
optimization schemes, Uniform Space Subdivision 
(Uniform Grid) and Octrees are most frequently used; 
see Fig. 2. These two techniques subdivide the object 
space into cells or voxels, and in each voxel register the 
information about the geometry that intersects it. These 
optimizations significantly speed up the ray-tracing 
process by traversing rays through the subdivision and 
performing intersection calculations only with the 
geometry inside the voxels along the ray path. Uniform 
subdivision, as its name implies, subdivides the object 
space uniformly in each of the x, y, and z directions and 
is the easiest to compute. Linear traversal algorithms for 
uniform subdivision are the three-dimensional versions 
of the 2D line rasterization algorithm (DDA, see [10]) 
and are typically called 3D-DDA. The Octree scheme is 
an adaptive scheme that exploits the scene’s geometry, 

recursively subdividing those voxels that contain the 
significant scene complexity, thus resulting, in general, in 
fewer voxels than in Uniform subdivision. Therefore, this 
method requires less memory and traversal steps. The 
Octree approach, however, requires slightly more 
complex preprocessing and traversal algorithms.  
 
4. The LDQ Data Structure 

In the process of NC-machining of a sculptured 
surface, potential interference between the cutting tool 
and the machined surface needs to be checked at least 
at each cutter location along the toolpath. That is, for 
each tool position and orientation we need to perform 
an intersection test between the tool and the machined 
part. If we consider the tool to be a cylinder of radius R, 
the task will be to identify all the polygons of the 
machined surface that interfere with the cylinder. A key 
observation is the similarity of this tool interference 
problem to the task in ray tracing of finding the polygons 
that intersect the ray. Our NC-machining application 
differs in the fact that now instead of a simple ray; we 
have to consider a ray of a finite thickness, i.e., a 
cylindrical one. Thus, optimization techniques for ray-
tracing algorithms could be applied to the problem in 
hand with minor alterations. 

Due to the fact that the surface that undergoes 
machining changes in time, the Octree representation is 
not our first choice for the data structure, since it will be 
difficult to update. Hence, a uniform grid will better suit 
our purpose. Nevertheless, as we aim to exploit the 
advantages offered by the Octree representation, instead 
of having a simple uniform grid, we use a hierarchy of 
uniform grids for the LDQ, 
doubling the grid’s resolution on each successive level; 
see Fig. 3. If, for example, the initial resolution is 2 by 2 
by 2, and the depth of the hierarchy is 4, then on the 
lowest level we will be employing a grid with a 
resolution of 16 by 16 by 16. This representation is 
identical to a fully expanded Octree, with the 
convenience of being able to use a simple 3D-DDA 
traversal algorithm at each level. We denote this specific 
data structure a HiGrid, short for a Hierarchical Grid. 
The following is a key observation: 

 
An intersection test of a polygon with a cylindrical 
ray of radius R is equivalent to the intersection of a 
simple ray with the 3D-offset of the polygon by 
radius R.  

 
Hence, in the initialization stage, we place a reference to 
a polygon in a voxel if the polygon intersects the box 
that is the offset of the voxel by R; see Fig. 4. Toward 
this end, we utilize the fast box-triangle overlap testing 
algorithm by Möller [3], which is based on the 
Separating Axis Theorem for two polyhedra. Then, in 
real time, we traverse the HiGrid using a simple ray, 
collecting all the polygons inside 
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(a) Uniform Grid 

 
(b) Uniform Grid 

Fig.  2.  Ray tracing space subdivision schemes. Ray-object intersections are applied only to the 
objects contained in the voxels along the ray (grey voxels). 

the voxels visited by the ray. The result will be a set of 
polygons that potentially interfere with the tool. When 
traversing the HiGrid, we step down to the lower level 
and continue the traversal of the grid with finer 
resolution if the number of polygons in the current voxel 
is greater than some predefined constant. To support 
changes in the geometry and polygon removal, all 
instances of every polygon in all the voxels in the HiGrid 
are linked in a linear list. Hence, the HiGrid is an 
efficient data structure that supports fast queries of 
Potentially Interfering Polygons (PIP), given the tool 
position and orientation and a radius R of the bounding 
cylinder. 
 
5. COLLISION DETECTION 

In this work, we assume that the tool is given as a 
polyline representing a tool’s profile to which we will 
refer as the tool’s silhouette, and which lies in the first 
quadrant of the yz-plane; see Fig. 5. A similar treatment 
will apply to a tool whose profile contains quadratic or 
higher order curves, which will require slightly more 
intricate calculations. 
We denote the canonical orientation of the tool as an 
orientation with the cutter position set at the origin and 
oriented along the positive z-direction. Let M be the 
inverse transformation that brings the tool from its 
current machining position back to the canonical 
orientation. To test for PIP–tool interference, we first 
apply M to each triangle from the PIP. We proceed by 
radially projecting the mapped triangles around the z-
axis onto the yz-plane. This radial projection is the trace 
that the triangle etches on the yz-plane (more precisely, 

on the half-plane 0>y ) when rotated around the z-axis. 

Consider the line segment AB, ),,( zyx aaaA = , 

),,( zyx bbbB = , rotated around the z-axis (see Fig. 6). The 

trace of AB in the yz-plane is given by the explicit 
quadratic equation that is derived by looking at the 
distance between a point on the segment and the z-axis: 

 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ,1

1)(

2

2

2







 −+−

−
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





 −+−

−
=

yzyz
zz

xzxz
zz

bazazb
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bazazb
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zd

                (5) 

 
where z changes continuously between ax and by.  

Now consider a segment of the tool’s silhouette, ST, 

( )zy ssS ,,0= , ( )zy ttT ,,0= . The squared distance from 

point STP∈  and the z-axis for a prescribed value of z is 

given by: 

( ) ( ) ( )[ ]
2

2 1)(






 −+−

−
= yzyz

zz

tszszt
st

zδ .                    (6) 

 
For the segment AB to intersect the segment ST of 

the profile of the tool, the right-hand terms of (5) and (6) 
must be equal. The comparison of these two terms 
yields the following quadratic constraint for z: 
 

( )( )
( )( )
( )( ) ,0

22

222

2222

=+−

++−

++−
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yyxx

yx

ggeac

gfgfeabcz

ffeabz

                                  (7)  
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By solving Equation (7) for each relevant tool silhouette 
segment ST and verifying that none of the real roots, if 
any, lies in a proper range, we can conclude that the 
segment AB either does or does not intersect the tool.  

Now given a triangle ABCΔ , one needs to identify 

the closest points of ABCΔ  to the z-axis for each value 

of z. 
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Fig. 3.  Hierarchical grid levels. Ray traversal at each voxel continues to the lower levels of the grid hierarchy with finer 
resolution, reducing, thereby, the number of polygons accumulated along the ray. 

 
Fig. 4. Voxel offset by the tool radius R. Here a reference to 

the polygon P will be placed in the original voxel since it 
intersects the offset box. 

There are several cases to handle; here we will 
examine the most complicated one. Consider the 
example depicted in Fig. 7. In this example we assume 
that the triangle’s vertices, A, B, C, are in descending z-

order. Let Q be the plane containing ABCΔ  and QN
r
 be 

its normal. Then, for each value of z, the closest points 

of Q to the z-axis will lie on the intersection between Q 

and the plane R whose normal RN
r
 is given by 

z×= QR NN
rr

, where ( )1,0,0=z , and which contains the 

z-axis. If R intersects ABCΔ , as in this example, then the 

closest triangle’s points to the z-axis will lie  on segments 
AE, EF, FB and BC. Segments AE, FB and BC will give 
rise to hyperbolic curves, while EF will generate a linear 
curve. Otherwise, and depending on the order of the 

triangle’s vertices, one or two to edges of ABCΔ  will 

form the set of the closest points to the z-axis. 
Once the triangle is analyzed and the closest segments 
are identified and extracted, Equation (5) is applied to 
each segment. The resulting set of connected hyperbolic 
arcs and/or line segments is, essentially, the lower 
envelope of the radial projection of ABCΔ  onto the yz-

plane. 
We proceed and obtain the set of hyperbolic arcs 

 

 
Fig. 5. The tool’s silhouette: a polyline representing the tool’s 
profile. 

 
 

Figure 6. Segment rotated around the z-axis. 
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and/or line segments for all the triangles in the PIP. We 
call this set the Hyperbolic Segments Set (HSS). To 
complete the collision detection test, for the current tool 
orientation, we have two alternatives. 

The first option is the direct approach. In this 
approach, each curve from the HSS is tested for 
intersection with the tool’s silhouette. Binary search is 
used on the tool’s silhouette segments, along the z-axis. 
Because each test is performed by analytically solving 
the quadratic Equation (7), this approach proves to be 
efficient when the tool’s silhouette contains a small 
number of segments. 

The second approach takes advantage of the lower 
envelope method described in Section 3.1. First 
the lower envelope of all the curves from the HSS is 

constructed in ( )( )nnO log4λ  time, assuming HSS 

consists of n curves. Thus, we have potentially reduced 
the total number of hyperbolic segments to be tested 
against the tool. Then, the tests for intersections between 
this lower envelope and the tool’s silhouette are 
performed by a simultaneous traversal over the lower 
envelope and the tool’s silhouette along z and a 
comparison between the two entities (we assume here 
that the tool’s silhouette is weakly monotone in the z 
direction). The last step is clearly linear in the complexity 
of the envelope and the tool, making this approach 
more attractive when very complex tool geometry is 
used, and the tool’s silhouette consists of a large number 
of segments. We compare these two above mentioned 
approaches in Section 6. 

 
6. RESULTS  

The collision detection algorithm presented in this 
paper was implemented in the IRIT modeling 
environment [2]. The lower envelope calculations and 
the comparison of the envelope with the tool profile are 

carried out with recent extension to the CGAL 
arrangement package [1]. In our tests, we used the Utah 
teapot model and a wineglass model, both in a 5-axis 
machining mode. Toolpaths were generated by sampling 
iso-parametric curves along the model surfaces. For the 
teapot model, we used a toolpath consisting of ~50000 
contact points covering the teapot’s body with tool 
orientations following the surface normals. A flat-end tool 
with a tool holder of a larger radius was used for 
machining the teapot. In the case of the wineglass 
model, the toolpath was sampled along an offset surface, 
having the orientation of the tool set so that its axis line 
goes through a fixed point. 

 

 
 
Fig. 8. Machining the body of the Utah teapot, using a flat-end 
tool oriented along the surface normal. Only 1% of the contact 
points are shown. Red dots and polygons indicate collisions at 
the cutter locations and the interfering geometry, respectively. 
The tool’s geometry is shown for one contact point with 
interference. 

A total of ~15000 
contact points were 
used. The tool that 
machined the 
interior of the wine 
glass is a ball-end 
tool. Fig. 8 and 9 
show the output of 
running the 
algorithm on both 
models. The teapot 
and the wineglass 
models consist of 
12600 and 2700 

polygons, 
respectively. It took 
about 64.2 seconds 
and 5.01 seconds, 
respectively, to test 
for collisions on a 
Pentium IV 2.4GHz 
machine with 
512MB of RAM, 
setting the initial 
resolution of the 

HiGrid data structure to 2 and the depth to 4. Red 

 
 
Fig. 7. The relevant points of 4 ABC  contributing to the 

trace lie on the segments  AE , EF , FB , BC .  

 
Fig. 9. Machining the interior of a 
wineglass, using a ball-end tool 
through a point. Only 3% of the 
contact points are shown. Red 
dots and polygons indicate 
collisions at the cutter locations 
and the interfering geometry, 
respectively. The tool’s geometry 
is shown for one contact point 
with interference. 
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polygons designate geometry that is overlapped by the 
tool during the simulation process. Tab. 1 and 2 show 

more detailed statistics for different

HiGrid depth 2 3 4 

Preprocessing time 0.188 sec. 0.609 sec. 2.594 sec.  

Total query time 133.7500 sec.  81.4070 sec.  61.6100 sec.  

Avg. PIP extraction time per query 0.0005 sec.  0.0003 sec.  0.0003 sec.  

Avg. intersections time per query 0.0020 sec.  0.0012 sec.  0.0009 sec.  

Avg. num. of polys. per query 1376.4468 801.7224 574.2602 

Avg. num. of intersections per query 18.3600 18.3600 18.3600 

Tab. 1. The Utah teapot model with 12600 polygons and ~50000 contact points along the toolpath, using a flat-end tool with 
a tool holder with a larger radius; see Fig. 8.  

HiGrid depth 2 3 4 

Preprocessing time 0.031 sec.  0.093 sec.  0.422 sec.  

Total query time 9.5160 sec.  6.1260 sec.  4.5940 sec.  

Avg. PIP extraction time per query 0.0001 sec.  0.0000 sec.  0.0000 sec.  

Avg. intersections time per query 0.0005 sec.  0.0003 sec.  0.0002 sec.  

Avg. num. of polys. per query 318.4795 192.1181 130.7773 

Avg. num. of intersections per query 14.3005 14.3005 14.3005 

Tab. 2. A wineglass model with 2700 polygons and ~15000 contact points along the toolpath, using a ball-end tool; see Fig. 
9. 

Number of segments in the tool’s silhouette 50 500 5000 50000 

Direct Approach 0.2 0.4 2.4 20.2 

Lower Envelope Approach 5.3 5.6 5.6 5.8 

Tab. 3. The Utah teapot model with 12600 polygons and ~50000 contact points along the toolpath, using complex tool 
geometry with the tool’s silhouette consisting of up to 50000 line segments. Average time per query (in milliseconds); see Fig. 
10. 

values of depth used for initializing the HiGrid data 
structure for both models. The initial resolution of the 
HiGrid was set to 2 in all test cases. Larger tool radius in 
the case of the teapot model resulted in a longer 
preprocessing time, as each polygon occupies more 
voxels in the HiGrid data structure when considering a 
bigger offset. Tab. 3 demonstrates the advantage of the 
lower envelope approach when using very complex tool 
geometry. Here, we tested the Utah teapot model with 
the toolpath as in Tab. 1. A tool with complex geometry 
was chosen (see Fig. 10), and tests with a tool’s 
silhouette consisting of 50, 500, 5000 and 50000 line 
segments were performed. 
 
7. CONCLUSIONS 

We have presented a new approach to the problem 
of collision detection in multi-axis NC-machining which 
yields, in the tests so far conducted, promising results. 
Preprocessing can take up a significant amount of time 
and memory, depending on the tool radius, model 
resolution (number of polygons) and the HiGrid 
resolution. Since this preprocessing is performed only 
once and can be used for more than one toolpath 
verification, it increases considerably the overall 

performance by narrowing the calculations to a small 
subset of the geometry. In the future, we intend  
to compute an exit vector from the intersection data to 
support collision avoidance as well as detection. Further, 
extending the tool definition to allow its 

 

Fig. 10. Complex tool geometry. 

silhouette to contain quadratic or higher order curves is 
on our research agenda. We expect to investigate the 
direct use of polynomial and/or rational surfaces in the 
near future. As already mentioned, the computation of 
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the lower envelope and its comparison with the tool 
profile are coded generically so that allowing for higher 
degree curves will not affect the topological part of the 
implementation and only local numerical procedures will 
have to be modified. Furthermore, as long as the tool 
profile consists of at most second-degree curves, our 
software can already carry out the collision detection 
precisely in the same way it is done for the polygonal 
tool profile in the current work, being able to analytically 
solve degree four polynomial constraints. 
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