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ABSTRACT 

 
Surface flattening is applied in many applications, such as in the aircraft, shoe, and garment 
industries. In this paper, a surface flattening algorithm based on the energy-minimization on the 3D 
surface is presented, which calculates the optimal 2D pattern that folds to the 3D surface with 
minimum deformation. Both isotropic and woven-like anisotropic materials are supported by the 
algorithm. Darts insertion is also incorporated in the algorithm to further enhance the flattening 
result. 

 
Keywords: surface flattening, woven fabric model, 3D fitting and energy minimization. 

 
1. INTRODUCTION 

In many applications, such as shoe and aircraft 
industries, surface flattening is one important process. In 
the shoe industry, the profile of the shoe upper leather is 
first estimated and then cut out, then the pieces of 
leather are sewed together and a foot shape mould is 
inserted in to let the leather to deform into a desired 
shape. In the aircraft industry, there are many structures 
reinforced by fabrics and woven fabric is commonly 
used [1]. Profiles of the woven fabric are estimated and 
cut out, and then they are laid onto a certain 3D shape. 
In both processes, the profile of the material is still 
estimated by human in some factories based on trial-
and-error and this estimation is quite time consuming 
and not accurate. In order to obtain an accurate profile, 
surface flattening algorithms are developed in the past 
few decades. The task of a surface flattening algorithm is 
this: given a 3D free-form surface and the material 
properties, find its counter-part pattern in the plane and 
a mapping relationship between the two so that, when 
the 2D pattern is folded into the 3D surface, the amount 
of distortion – wrinkles and stretches – is minimized. 

The flattening of triangular mesh is also a key problem 
in parameterization and texture mapping. Floater [2] 
investigated a graph-theory based parameterization for 
tessellated surfaces for the purpose of smooth surface 
fitting; his parameterization – actually planar 
triangulation is the solution of linear systems based on 
convex combination. In [3], Hormann and Greiner used 
Floater’s algorithm as a starting point for a highly non-
linear local optimization algorithm which computes the 
positions for both interior and boundary nodes based on 
local shape preservation criteria. The method is very 
promising, but it is not clear if the procedure is 

guaranteed to converge to a valid solution. A quasi-
conformal parameterization method based on a least-
squares approximation of the Cauchy-Riemann 
equations is introduced in [4], where the defined 
objective function minimizes angle deformation. Sheffer 
and De Sturler [5] also presented a texture mapping 
algorithm that causes small mapping distortion. 

Their algorithm consists of two steps: 1) using the Angle 
Based Flattening (ABF) parameterization method to 
provide a continuous (no foldovers) mapping, which 
concentrates on minimizing the angular distortion of the 
mapping so leads to relatively large linear distortion; 2) 
to reduce the linear distortion, an inverse mapping from 
the plane to the result of ABF is computed to improve 
the parameterization – the improved result has low 
length distortion. 

McCartney et al. [6] flatten a triangulated surface by 
minimizing the strain energy in the 2D pattern. The 
surface is first triangulated using Delaunay triangulation. 
Then the triangles are transformed onto a 2D plane. 
However, there are some flattened triangles that cannot 
preserve their length relationship with respect to the 
triangles on the surface. This length differences are 
measured as strain energy. If the strain energy is zero, 
that means the flattened triangle preserve their length 
relationships with the original triangles on the surface, 
i.e. no deformation occurs. Thus, iterative method is 
applied to minimize this strain energy in the 2D pattern. 
The endpoints of the triangles are moved in orthogonal 
directions by trial to obtain smaller energy in each 
iteration. Wang et al. [7] improve McCartney’s 
algorithm by using a spring-mass system. This guides the 
endpoints to approach better positions by the force of 
springs and the computational speed of the 
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minimization is improved. The accuracy of the flattening 
can also be controlled by using the spring constant. 

There are also some other energy-minimization based 
flattening algorithms (cf. [8-11]). All these algorithms 
though share a common strategy: the energy 
minimization scheme is applied on the 2D pattern. In 
other words, they assume the original 3D surface has 
zero energy, i.e., without wrinkles or stretches, while the 
2D pattern is sought that minimizes the energy. On the 
contrary, many physical processes are just opposite. For 
example, when a motorcycle helmet is made, a certain 
piece is first cut out of a 2D sheet, which is totally 
relaxed and hence has zero energy. This piece then is 
folded onto the hard model of the helmet shape to form 
one layer of the helmet; the energy, in the form of 
wrinkles and stretches, thus is generated in this folded 
3D layer. Naturally, it should be asked if a “forward” 
energy minimization can generate better flattening 
result, as it corresponds closer to the physical process. 

Woven fabrics consist of a series of vertical threads 
(warp) with crossing with a series of horizontal threads 
(weft). The strength of the threads is usually strong and 
the threads resist deforming under force, but the shear 
deformation at the crossing between a warp thread and 
a weft thread can occur. Three assumptions are made to 
model a ply of woven fabrics (Aono et al. [12-14]): 

• The warp and weft threads are inextensible; 
• A thread segment between adjacent crossings is 

straight on the surface; 
• No slippage occurs at a crossing when the ply is 

deformed. 
The algorithm of Aono et al. is a geometrical approach 
for flattening a woven-cloth ply. A base line is chosen on 
the 3D surface and equidistance points (crossings) are 
mapped on it. Equidistance nodes are then mapped 
throughout the whole surface under predefined 
sweeping direction. Shear deformation is expected and 
cuts (called darts) can be inserted to reduce the shear 
[13, 14]. The problem of this method is that the final 2D 
pattern is not unique. The shape of the profile crucially 
depends on the position and the orientation of the base 
line and the sweeping direction. There are cases that, 
when the base line and/or the sweeping direction are not 
properly chosen, the algorithm diverges, thus failing to 
generate the 2D profile. Also the shape of the darts on 
the surface cannot be controlled. 

Some approaches in literature considered the issue of 
where to insert cuts in flattening triangulations. Parida 
and Mudur (1993) [15] presented an algorithm to 
obtain planar development (within acceptable 
tolerances) of complex surfaces with cuts and overlaps 
only in specified orientations. Their algorithm first 
obtains an approximate planar surface by flattening 
triangles, cracks are generated while triangles are 

flattened one by one; and then, they reorient cracks and 
overlap parts in the developed plane to satisfy 
orientation constraints. Their algorithm might generate 
many cracks and calculation errors. The approach of 
Wang et al. [7] generates the cutting line from the 
stretch energy distribution map; however, the length of 
cutting paths is not considered in their paper. In [16], 
Sheffer tried to find the shortest cutting path that passes 
through the nodes with high Gaussian curvature to 
reduce the parameterization distortion of the 
triangulated surface. Unfortunately, this method is not 
able to find protrusions with widely distributed 
curvatures (e.g., looped cylindrical surfaces). To 
enhance Sheffer’s approach, Wang et al. [17] developed 
an technique that computes the shortest path from a 
node to the surface boundary in linear time; and the 
cutting paths on the surface with widely distributed 
curvatures are generated while preventing flipped 
triangles in surface flattening. Recently, Katz and Tal 
[18] proposed a hierarchical mesh decomposition 
algorithm that decomposes a given mesh into 
meaningful components referring to segmentation at 
regions of deep concavities. Obviously, this cut insertion 
technique cannot be directly applied to reduce stretches 
in flattening. 

Motivated by the issues with the existing flattening 
algorithms as discussed above, in this paper, we present 
an energy-minimization based surface flattening 
algorithm that distinguishes from the existing flattening 
algorithms in (1) the energy minimization is conducted 
“forward”, that is, it is applied on the 3D surface, not in 
the plane; (2) it supports both isotropic and woven 
materials; (3) the insertion of cuts is also incorporated 
into the algorithm as an option to further reduce the 
energy. 

The structure of this paper is organized as follows. In 
section 2, the mesh model and the definitions used in 
our algorithm are preliminarily described. The 
methodology of finding the optimal pattern is presented 
in section 3, which includes the initialization of the mesh 
on surface, the energy minimization by using the 
conjugate gradient method and the steepest descent 
method, the control of the mesh size adaptively and the 
handling of the insertion of cut. Some graphical 
examples are illustrated in section 4. Finally, section 5 
concludes the paper and indicates the direction for 
future research. 
 
2. PRELIMINARIES 

The problem to be solved in this paper is to fit a planar 
woven fabric model (mesh inextensible in warp and weft 
direction) onto a specified region on a 3D parametric 
surface so that the 2D shape of the fitted fabric piece can 
be determined. During the entire fitting procedure 
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(including the energy minimization), all nodes of the 
fabric model lie on the given 3D surface exactly. Dart 
insertion is given as an option to gain more accurate 
fitting results; it is defined manually in our approach. 

In the following of this section, we lay out necessary 
preliminaries and definitions. They include the 
assumptions and the components in the model, the 
identification of an internal node and a boundary node, 
the energy definition and the discussion in choosing a 
right combination of spring constants to model isotropic 
or woven material. 
 
2.1 Definition of the Model 

The model used in our system is for plain weave woven 
fabrics. As already alluded earlier, three assumptions are 
made with this model: 1) the weft threads and the warp 
threads are not extendable, 2) no slippage occurs at the 
crossing of a weft and a warp thread, and 3) a thread 
between two adjacent crossings is mapped to a straight 
line segment on the 3D surface. The woven fabric is 
modeled by a spring mesh. An example unit cell of this 
model is shown in Fig.1. 
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Fig. 1.  Unit cell of the spring mesh. 
 

There are three components in this model, weft 
(horizontal) spring, warp (vertical) spring and diagonal 
spring. For real woven fabrics, there are no diagonal 
threads. The reason of introducing diagonal springs in 
the model is explained in section 2.2. Each of three types 
of the spring has its own initial length at which the spring 
stores zero energy. The intersection between springs is 
called a node whose position determines the 
deformation of the springs connected to that node. Each 
node is indexed by M[i, j], where i, j are integers 
representing the row and column respectively. As shown 
in Fig.1, the internal nodes have either four or eight 
springs connected. A boundary node is one with neither 
eight nor four springs connected. For a cloth model in 
2D, all the weft springs are aligned in one direction and 
all the warp springs are aligned in another direction. In 
this model, their directions are orthogonal to each other, 
although they don’t have to be. If the initial length of the 
weft spring and the warp spring are rweft, and rwarp 

respectively, the initial length of the diagonal spring rdiag 
is defined as 

22
weftwarpdiag rrr += .                                             (1) 

When the spring mesh is mapped onto the 3D freeform 
surface, the directions of different kinds of springs and 
their lengths may not be preserved. Every node is on the 
freeform surface precisely. A node near the boundary of 
the freeform surface has less than eight or four springs 
connected and becomes a boundary node. Those 
boundary nodes are used to approximate the 
corresponding 2D boundary of the cloth model and the 
algorithm for achieving this mapping and approximation 
will be discussed in the later chapters. 
 
2.2 Definition of Energy and Deformation  

The spring energy can be expressed as follows: 

2
)(

2

1
iii lken Δ=                                                          (2) 

where eni is the ith spring energy (i = 0, 1, …, n); n is 
the total number of springs in the spring mesh; ki is the 
spring constant of the ith spring; and Kli is the 
deformation of the ith spring. 

The principle of setting the spring constant ratio between 
them is similar to the case in making a laminate, in 
which, layers of materials stacked together. For isotropic 
cloth model, the counterpart in the laminate system is 
quasi-isotropic laminate [15], which can be produced by 
stacking the same material with orientation at -45˚, 0˚, 
+45˚ and 90˚. Thus, the diagonal spring in isotropic 
cloth model reflects the tensile deformation in the cloth 
model. In order to model the inextensibility of the weft 
and the warp threads in real woven fabric, the spring 
constants for the weft springs and the warp springs are 
set to be K times larger than that of the diagonal springs, 
where K is an empirically determined integer, chosen 
500 to 550 in our system. The relatively large spring 
constant serves as a penalty to inhibit the deformation of 
the weft and the warp springs, and the relatively small 
spring constant for the diagonal springs allows them to 
deform freely. Therefore the deformation of the spring 
mesh is dominated by the deformation of the diagonal 
springs, i.e. shear deformation, and this is close to the 
deformation pattern of real woven fabrics. 
 
2.3 Definition of Directional Energy  

The energy minimization algorithm finds the local 
minimum with respect to the direction of the initial cloth 
model on surface as a flattened pattern.  When handling 
anisotropic material, if the direction of the material is not 
specified on the surface, the flattened pattern may 
depend on the position of the initial cloth model. 
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In order to obtain a unique flattened pattern for 
anisotropic material, a directional energy term is 
proposed. The concept of directional energy is the 
measure of the deviation of a specified weft yarn or warp 
yarn from a direction. Yarn means a series of nodes in 
the same row for the weft yarn or in the same column for 
the warp yarn, and the direction is defined as a plane 
function. The directional energy (Dir) is defined as 
follows. 

If M[i,j] is in the specified weft yarn or warp yarn, then, 

   dzyxkDir jiMjiMjiMjiM +++= ],[],[],[],[ γβα ,           (3) 

else   

  0],[ =jiMDir ,  

where the plane of direction is dzyxf +++= γβα ; i 

or j is fixed if the weft yarn or the warp yarn wanted to 
be directional is specified. k is a constant to adjust the 
degree of the specified yarn following a specified 
direction. If k is set to be very large compared with the 
spring constant in the cloth model, then the specified 
yarn is forced to form a plane curve.  

The total energy of the spring mesh (EN) is the 
summation of energy of all the springs, i.e.,  
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The energy measured is the energy required to deform 
the woven fabric when fitting it onto a surface. For a 
surface with zero Gaussian curvature everywhere, i.e. a 
developable surface, the energy of the model would be 
zero. For a non-developable surface, since it cannot be 
flattened onto a planar figure without deformation, the 
energy of the model would be large. 
 
3. METHODOLOGY 

A configuration of a piece of woven fabric on a freeform 
surface is said to be an optimum if its deformation is the 
minimum. Correspondingly, an optimal configuration for 
the spring mesh is one with its mesh energy minimized. 
In order to solve this minimization problem, the 
conjugate gradient method is applied. Before the energy 
minimization starts, an initial spring mesh needs to be 
fitted on the freeform surface. After the energy of the 
mesh is minimized, dart(s) may be inserted in certain 
higher deformation regions to further minimize the spring 
mesh energy. Lastly, the boundary of the cloth model is 
smoothly approximated. 
 
3.1 Initial Mesh Fitting  

A good initial mesh on a freeform surface can enhance 
the speed of the energy minimization process and 
prevent the occurrence of unfavorable results. There are 
three criteria for a good initial mesh: 1) the lengths of the 

weft and the warp springs should be at their initial 
length; 2) no overlapping occurs; and 3) the mesh 
should cover the entire freeform surface. The procedure 
we take for finding an initial fitting mesh is similar to that 
of Aono et al. [12], but with certain variations. It consists 
of three steps: first, nodes are mapped onto two 
constrained paths; the rest of the nodes are then mapped 
based on the nodes on the constrained paths; finally, 
nodes are filled into the unmapped region on the given 
surface. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 2.  Initial mesh fitting 

A. Mapping of the constrained paths 

Two constrained paths are mapped by equidistance 
nodes in two different directions, representing a series of 
weft springs and a series of warp springs. This mapping 
causes no deformation in the springs. In the current 
implementation, the two constrained paths are defined 
by the intersection curves of two orthogonal planes with 
the surface, with their positions selected in a way such 
that their intersection point is close to the center of the 
surface (cf. Fig. 2). For example, as an approximation, 
for a surface which is parameterized into u and v, where 
0<u<1, and 0<v<1, the intersection point can be 
chosen to be at u=0.5 and v=0.5 and the normal of the 
plane can be defined as a vector parallel to the tangent 
plane of the surface at the intersection point with x 
component or y component equaling to zero. An 
equidistance node is calculated by solving the solution of 
the intersection point between a sphere (with radius, rweft 

or rwarp), a plane, and a surface. Newton-Raphson 
method is applied to obtain the solution [12]. This 
mapping is called One-Neighbour Mapping in the rest of 
this paper. 

One-Neighbor Mapping Formulation 

Refer to Fig. 3. Suppose we want to map a point (x, y, z) 
with distance r from a point (x0, y0, z0), which fits into a 
plane (normal = [Nx, Ny, Nz]) and on a surface 
parameterized in u, v (x(u,v), y(u,v), z(u,v)). This 
becomes a problem of two equations solving for two 
variables. Specifically, we have 

Sphere equation: 
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Plane equation: 

0)()()( 000 =−×+−×+−×= zzNyyNxxNF zyxplane
.  (6) 

Point (x, y, z) can be expressed as (x(u,v), y(u,v), z(u,v)). 
Then, u and v are the two variables to be solved.  
 

B. Mapping nodes based on the constrained paths 

As illustrated in Fig. 2, the surface is divided into four 
quadrants. Nodes are mapped on the surface quadrant 
by quadrant, row by row and column by column. A new 
node is mapped such that the weft spring and the warp 
spring connected to that node have no deformation. The 
position of a new node on the surface can be calculated 
by finding the intersection point of two spheres (with 
radii, rweft and rwarp) and the surface. This is called Two-

Neighbour Mapping in the rest of this paper.  

Two-Neighbour Mapping Formulation 

Refer to Fig. 4. Suppose we want to map a point (x, y, z) 
with distance rweft from a point (xa, ya, za), with distance 
rwarp from a point (xb, yb, zb) and on a surface 
parameterized in u, v (x(u,v), y(u,v), z(u,v)). This 
becomes a problem of two equations with two variables:  

Sphere equation: 

0)()()(
2222 =−−+−+−= weftaaasphereA rzzyyxxF    (7) 

Plane equation: 

0)()()(
2222 =−−+−+−= warpbbbsphereB rzzyyxxF   (8) 

Point (x, y, z) can be expressed as (x(u,v), y(u,v), z(u,v)). 
Then, u and v are the two variables to be solved. 
Newton method is applied to solve this problem. 
 

C. Node filling 

Since the mapping is performed based on the 
constrained paths and in a sequential manner, for some 
special surfaces, the prescribed mapping procedures 
cannot fully fill the surface. This usually happens when 
the specified region to be filled on the given surface is 
quite different from a rectangle. 

Referring to Fig. 5, the unmapped region is due to the 
absence of node on the previous row or column when 
performing the Two-Neighbor Mapping. The Node 
Filling algorithm helps solve this problem. The idea of 
the Node Filling algorithm is to use One-Neighbor 

Mapping to approximate a new node by a boundary 
node which is not close to the boundary of the surface 
and then Two-Neighbor Mapping is utilized to map other 
new nodes. Fig. 5 is an example of the Node Filling 
process. Node2 and node4 are the boundary nodes, 
named as M[i,j] and M[i+1,j] respectively. First, node3 is 
mapped by One-Neighbor Mapping, which is applied on 

node2 with radius rweft and a plane parallel to the 
direction of node2 and node1. The normal of the plane 
is defined as follows. 

Assume there exists a node M[i,j], and the node 
M[i+a,j+b], where a,b∈{–1,0,1} and |a|+|b|=1, is 
going to be mapped based on the direction between the 
nodes M[i-a,j-b] and M[i,j]. Then the center of the sphere 
is at M[i,j] and the radius is rweft or rwarp. The normal of 
the plane, N, can be defined by the cross product of the 
unit normal ni,j at M[i,j] on the freeform surface and the 
unit vector parallel to M[i,j]- M[i-a,j-b], i.e.,  

],[],[

]),[],[(
,

bjaiMjiM

bjaiMjiM
nN ji

−−−

−−−
×= .                      (9) 

Then, node5 is mapped by Two-Neighbor Mapping, 
which is based on node4 and the new node node3. The 
Node Filling algorithm is only applied on the boundary 
nodes of the mapped region and it is iterated until no 
new node is created in that iteration. 
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Fig. 3.  One-neighbor mapping 
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Fig. 4.  Two-neighbor mapping 
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Fig. 5.  Node fitting on a given surface 
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3.2 Energy minimization 

Due to the choice of the direction and the mapping 
sequence of the constrained base paths, the energy of 
the initial spring mesh is usually not at the minimum 
state, even for a developable surface. The boundary in 
2D at this stage would not be the correct boundary. 
Thus, energy minimization is applied to obtain a better 
boundary.  

The freeform surface used in our system is parameterized 
in u and v as a NURBS. Thus, for each node on the 
surface, it can be expressed by two variables, u and v. 
For the spring mesh with population N, there are 2N 
variables. Let Xi be the solution vector at the i

th iteration 

[ ]Ti nodeNnodenodeX ,2,1 L= .                             (10) 

Since node i can be expressed by (ui,vi), thus equation 
(10) can be rewritten as 

[ ]TNNi vuvuvuX ,,,, 2211 L= .                                (11) 

The steepest descent method and conjugate gradient 
method are used to solve the minimization problem for 
these 2N variables in equation (11). Since some nodes 
may leave the surface during the iterations of energy 
minimization, we also define a mechanism to adaptively 
control the population of the nodes on the surface. The 
minimization process is terminated when the change of 
the total energy EN is within a small tolerance K and the 
population of the nodes no longer changes. 

The steepest descent method and the conjugate gradient 
method are iterative methods and their general 
formulation can be written as 

iii DXX α+=+1                                                      (12) 

where D is the direction vector with the same dimension 
as the solution vector X, and α is a positive scalar to be 

chosen, such that the spring mesh energy with variables 
in Xi+1 is minimized. This direction vector provides a 
downhill direction, but does not guarantee the function 
to reach the minimum at this direction. Thus, we have to 

find an α which minimizes the function value in 

direction D. The α  can be found by using golden 

section search. The difference between the two methods 
lies in the formulation of the direction vector, as 
described below.  

Direction vector for Steepest Gradient Method: 

( )ii XEND −∇= ,                                                    (13) 

which is the gradient direction at Xi. The convergence 
rate of the steepest descent method is very slow, but it 
only needs the knowledge of the derivatives of the 
variable in the recent iterations. 

Direction vector for Conjugate Gradient Method 

iiii DfD β−−∇= ++ 11                                              (14) 

i
T
i

i
T
i

i
ff

ff

∇⋅∇

∇⋅∇
= ++ 11β                                                     (15) 

There are generally two versions for β and equation (14) 
is the Fletcher-Reeves version. As shown by the 
equations, the direction vector needs the direction vector 
and the gradient vector from the previous iteration, thus 
usually the steepest descent method is run once before it 
to provide the direction and the gradient vectors. For 
further details of the steepest gradient and conjugate 
gradient methods, it is suggested to refer to the 
references written by Belegundu et al. [19] and Miller 
[20]. 
 

3.3 Adaptive population control 

During the iteration, the positions of nodes will move 
and some of them may move outside the boundary of 
the freeform surface. Our freeform surface is defined by 
NURBS; if the parameter moves outside the defined 
ranged or forming springs crossing dart (to be discussed 
in the next session), then the position will be undefined. 
In this case, the node is deleted. Then the node 
population will change and the % in the conjugate 
gradient method cannot be determined. To deal with 
this, the steepest descent method is run once after each 
population change. 

In some cases, the initial spring mesh may shrink during 
the iteration, which leads some portions of the surface 
not be covered by the mesh. In order to cover the entire 
specified surface region, new nodes are inserted to fill 
those uncovered regions; the insertion is performed by 
the node-filling algorithm.  

The configuration, i.e. the M[i,j] neighboring node 
relationship, of the spring mesh in 2D is the same as that 
on the freeform surface. However, the pattern, i.e. the 
area and the boundary, of the spring mesh in 2D may be 
quite different than that on the freeform surface, 
especially if the surface is non-developable. This is a 
direct result of our “forward” energy-minimization – the 
deformation is only allowed in the spring mesh on the 
surface but not in the mesh in 2D which is considered to 
be totally relaxed 
 

3.4 Dart insertion 

For a non-developable surface, the deformation of the 
spring mesh is seen to concentrate in highly elliptic and 
hyperbolic regions. In the regions with severe spring 
deformation, i.e. with higher spring energy, dart(s) can 
be inserted to release the energy, i.e. reduce the 
deformation. A dart on a cloth model means the springs, 
which are across the dart, are deleted and those nodes 
near the dart are defined as positive dart nodes, negative 
dart nodes or boundary nodes. There is no spring 
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formed between two different dart nodes. After the 
dart(s) is inserted, the model has more freedom to move 
and the energy minimization is run to further minimize 
the energy to obtain a better pattern. Aono et al. [14] 
suggested a dart or polygon cut could be applied on the 
flattened pattern. However, this approach cannot control 
the shape of the dart on surface. In order to control the 
shape of the dart on surface, a plane dart and a curve 
dart are proposed. Although a plane dart can be 
modeled as a curve dart, it is developed due to its 
simpler formulation 

A. Plane dart 

The definition of a plane dart consists of a plane 
equation and its boundary box. A plane equation can be 
expressed as 

dzyxF +++= γβα ,                                      (16) 

where α , β , γ  are the components of the normal of 

the plane and d is the distance between the plane and 
the origin. Six values are stored as a boundary box for 
the plane dart; they are xmin, xmax, ymin, ymax, zmin, zmax. 
With the above information, the plane dart is defined as 
an intersection curve of the plane and the surface within 
the boundary box. A spring is sait to cross a plane dart if 
one of its two end points, node1 and node2, is inside the 
boundary box and F[node1]*F[node2]<0. If a spring 
crosses the dart, its end nodes are then respectively 
labeled as a positive dart node and a negative dart node. 

B. Curve dart 

A curve dart is conducted to handle a dart whose shape 
is not a plane curve. The shape of a curve dart is first 
designed by the user on a plane. Then the plane curve is 
projected onto the surface along the viewing angle of the 
user, so the projected curve has the shape of the plane 
curve viewed by the user. Since the projected curve is on 
the surface, so the surface curve is represented as a 
function of u and v. Finally, the surface curve is 
approximated by a number of biarcs [21] in u-v domain. 
A biarc approximation is used because it requires less 
number of biarcs to approximate a curve within a 
prescribed tolerance compared with the number of data 
points. Biarcs can also be converted into NURBS 
representation easily, its control polygon consists for two 
isosceles triangles and each triangle is a control polygon 
of an arc. The checking of whether a spring crosses a 
dart is performed in the u-v domain with the assumption 
that the spring in the u-v domain is also a line segment. 
If the surface is parameterized in a highly irregularly way, 
this assumption may only affect the definition of the 
springs (if it is crossing the dart) at the end point of the 
dart curve. 
 

3.5 Boundary approximation 

After the energy of the spring mesh is minimized, the 2D 
boundary of the mesh should be approximated for 
smoothness. The simplest way to obtain the boundary is 
to connect all the boundary nodes together to form a 
closed polygon. However, a very fine mesh is needed to 
obtain a smooth boundary. If the boundary of the 
surface has a corner but there is no node mapped to this 
corner, then this corner feature would be lost on the 2D 
mesh. 

In order to use a coarse mesh to obtain a smooth 
boundary and preserve every feature on the boundary of 
the surface, the points on the boundary are sampled and 
approximated evenly. For every boundary point, the 
closest node M[i,j] to it is searched. A row vector is 

formed by M[i,j] - M[i±1,j] and the normal of a row 

plane is the cross product of the row vector and the 
surface normal at M[i,j]. A column vector is formed by 

M[i,j] - M[i,j±1], and the normal of a column plane is the 

cross product of the column vector and the surface 
normal at M[i,j]. Using the row plane and column plane 
to cut the boundary and two intersection points 
representing the extension of weft thread and the warp 
thread are calculated. Using the two intersection points 
and M[i,j], a plane can be defined. The boundary point 
is then projected onto the plane and the position on the 
plane is transformed to the rectangular coordinates in the 
corresponding 2D pattern (Fig. 6). 

Boundary 

point

Closest 

node
Extension 

point

Projected point

 
Fig. 6.  Mapping of the boundary points 

 

4. RESULTS AND DISCUSSIONS 

The prescribed flattening algorithm has been fully 
implemented on a PC with a modest configuration. Five 
examples, a partial cone of anisotropic material, an 
octant-sphere of isotropic material, the same octant-
sphere but of anisotropic material, and finally a free-form 
surface of both materials, are presented next to illustrate 
the correctness and practicality of the algorithm. A cone 
is a developable surface, which can be flattened into a 
plane without any deformation. Thus, the cone example 
is used to examine the basic ability of our algorithm to 
flatten a developable surface. The octant-sphere, which 
is non-developable, is used to test the algorithm on non-
developable surfaces, as well as the effect of dart 
insertions. To compare the effect of the material 
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properties on the final flattened 2D pattern, both 
isotropic and anisotropic materials are used for this 
surface. Finally, the third surface is a piece of clothing in 
the form of a NURBS surface. In the figures given next, 
the springs are colored in red, green and blue. The 
springs with the highest tensile strain energy are colored 
by pure red and those with the highest compressive 
strain energy are colored by pure blue. Pure green spring 
indicates zero energy. The other springs are colored 
proportionally from the highest value of the tensile down 
to the highest compressive strain energy. For a clear 
illustration of the boundary in the 3D model, the 
boundary nodes are represented by small yellow spheres 
and the dart nodes are represented by small blue and 
red spheres. The isotropic material used has a spring 
constant ratio: 

weft : warp : diagonal = 100 : 100 : 100. 
The anisotropic material used has a spring constant ratio: 

weft : warp : diagonal = 500 : 500 : 1. 

   

Fig. 7.  Mapping of the boundary points 

Example I: A conical frustum of anisotropic 

material 

A conical frustum with an anisotropic material is tested. 
Since this is a developable surface, it should be fitted 
without any deformation by a 2D pattern. Fig. 7 shows 
the flattening result. As seen in the figure, the total 
energy of the spring cone is achieved at a very low level 
and the energy of the spring is evenly distributed. It is 
expected that the inner and the outer circumferences of a 
flattened cone frustum are circles. The boundary of the 
flattened pattern agrees with the circles (pink), which are 
added for comparison.  There is a small region which 
has relatively higher strain in a series of diagonal springs. 
They are expected to be released if the tolerance term in 
the termination criterion of the energy minimization is 
lowered.  

    

(a) in orientation 1 (b) in orientation 2 

 

Fig. 8. Optimized isotropic mesh on an octant-sphere in 
different orientations 

Example II: An octant of isotropic material 

Conceivably, for isotropic materials, a good flattening 
algorithm should generate an identical or similar 2D 
pattern for a surface regardless of whatever the 
orientation of the spring mesh on the surface. To test our 
algorithm in this aspect, Fig. 8 shows an optimized 
isotropic mesh on an octant-sphere in different 
orientations. The result is as expected; the flattened 
patterns are identical, only different in orientation. 
 

Example III: An octant of anisotropic material 

Fig. 9 shows an optimized anisotropic mesh on an 
octant-sphere. The strain concentration regions on the 
surface are shifted compared with that in isotropic mesh 
(Fig. 8a). Also, unlike the 3D surface which is symmetric 
with respect to its centroid, the boundary of the 
corresponding 2D pattern is symmetric to its center line, 
because of the anisotropic properties of the spring mesh 
and the symmetric pattern in the initialization stage. If 
the initial pattern is not symmetric, then the minimization 
result is the nearest local minimum of the initial mesh 
and the flattened pattern becomes different. Direction 
energy is added to control the orientation of the 
minimized result. Fig. 10 has two examples of 
constraininh orientation of anisotropic mesh. In each 
example, there is a column of nodes labeled as small 
yellow spheres constrained to the direction of the grey 
double arrow. The flattened patterns are not the same in 
the case of an isotropic mesh – they are different in 
shape. 

   

Fig. 9.  Optimized anisotropic mesh on a octant-sphere 

    

(a) with prescribed orientation 
1 

(b) with prescribed orientation 
2 

Fig. 10. Optimized anisotropic mesh on a octant-sphere with 
different prescribed orientations 

 
Example IV: Insertion of plan dart and curve dart 

Since the octant-sphere is not a developable surface, so 
deformation is developed in the minimum energy 
pattern. The location and the direction of buckling can 
be determined by the color of the springs. To further 
reduce the strain, a dart can be inserted using the 
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proposed plane dart and curve dart. A plane dart is 
inserted onto an octant-sphere (Fig. 11). A sphere is an 
elliptic surface, so a V-shape result at the dart is 
expected. Fig. 12 shows the result of inserting a curve 
dart onto an octant-sphere with isotropic and anisotropic 
materials. Their flattened patterns are slightly different at 
the tip of the dart and at the corners. For the anisotropic 
example, the energy of the springs is evenly spread 
compared with the example without dart (Fig. 8b). Due 
to the energy release by the dart insertion, the shape of 
the anisotropic mesh becomes similar to the shape of the 
isotropic mesh. 

   

Fig. 11. Optimized isotropic mesh on a octant-sphere with a 
plane dart 

A good flattening algorithm should try to preserve the 
boundary length and the surface area on the 2D mesh 
while at the same time minimizes the total energy 
(deformation). To give a quantitative measure of the 
optimization results, the boundary error and the area 
error are used. The data given in Table 1 verify the 
proposed algorithm in this regard. It is shown that the 
energy and the errors decrease when a cut is inserted. 

  

(a) isometric mesh (b) anisometric mesh 

Fig. 12.  Optimized isotropic vs. anisotropic mesh on a octant-
sphere with a curve dart 

Table 1.  Measuring data of fitting results 

Example EN 
Boundary 
Error (%) 

Area Error 
(%) 

Octant, Isotropic (Fig. 
8a) 

8.53 5.35 0.37 

Octant, Isotropic, with 
Curve Dart (Fig. 12a) 

1.05 2.35 0.10 

Octant, Isotropic, with 
Plane Dart (Fig. 11) 

1.65 2.65 0.10 

Octant, Anisotropic (Fig. 
9) 

0.26 5.46 0.42 

Octant, Anisotropic, with 
Curve Dart (Fig. 12b) 

0.05 2.59 0.11 

 
Example V: A freeform surface of anisotropic 

material 

Finally, we apply our surface flattening algorithm to a 
piece of garment of an anisotropic material modeled as a 
freeform NURBS surface (Fig. 13a). In practice, a cut is 
usually made on the pattern near the center line at the 
collar to enhance the flattening quality. A dart is thus 
inserted accordingly, and Fig. 13b and 13c show the 
corresponding optimization result. 

Table 2.  Computing statistic of the garment patch 

Example Figure 
Boundary 
Error (%) 

Area Error 
(%) 

Garment, anisotropic  13a 0.16 2.21 

Garment, anisotropic 
with plane dart 

13b 0.24 0.94 

Garment, isotropic 
with plane dart 

13c 2.08 0.09 

   

   
(a) anisotropic, 
without dart 

(b) anisotropic, 
with dart 

(c) isotropic, 
with dart 

Fig. 13.  Garment patch 

    

(a) (b) (c) (d) 

Fig. 14.    Flattening the garment patch with the planar energy 
minimization approach [7] 

Table 3.  The boundary and area error of the planar energy 
minimization approach [7] 

Example Figure 
Boundary 
Error (%) 

Area Error 
(%) 

Garment  14a, 14b 13.52 4.10 

Garment with dart 14c, 14d 5.32 3.84 

To compare the method presented in this paper and the 
approach in [7], we tessellate the NURBS surface of the 
garment patch (as shown in Fig. 14a), and apply the 2D 
energy minimization approach to determine its related 
2D pattern. The result is given in Fig. 14b. After inserting 
same vertical dart, the flattening result is as shown in Fig. 
14d. The boundary errors and area errors are listed in 
Table 3. Obviously, the approach introduced in this 
paper gives much more accurate results. 
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5. CONCLUSION 

A robust and practical energy-minimization based 
surface flattening algorithm is proposed. We model the 
3D surface by a spring mesh and take the difference in 
length between the corresponding spring in 2D and 3D 
as the energy of that spring. Our algorithm has the 
following characteristics. 

• We assume zero energy on the 2D pattern and 
directly minimize the energy on the 3D surface 
itself – this conforms closer to a physical folding 
process; 

• It supports both isotropic and anisotropic 
materials; 

• The minimization is conducted in the 
parametric domain of the 3D surface; 

• Darts insertion is also implemented in our 
system, directly on the 3D surface, with a plane 
curve or non-plane curve shape. 

For the future development, there is room for the 
improvements in the energy minimization, so that its 
speed can fulfill the requirement of real time application.  
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