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ABSTRACT 

 

An evolutionary approach has been introduced for representing shapes by optimal curve fitting to 

planar data raised from the outlines of the two dimensional shapes. The algorithm designed, 

consists of various phases towards the solution of the problem. The spline model used is a rational 

cubic spline. It is a C1 model possessing shape parameters in its description in such a way that one 

parameter is sitting between each two consecutive control points. These shape parameters provide 

interval tension control and have been utilized to obtain an optimal curve fit to data raised from the 

outlines of the planar shapes. Detecting corners, from amongst the data points, is one of the 

important phases in the design algorithm. It helps in many ways including keeping permanent 

genes in the chromosomes, capturing a pleasant looking spline fitting data. In case of too large 

data, it provides a data reduction concept. The chromosomes have been constructed by 

considering the candidates of the locations of knots, together with shape parameters, as genes. The 

knots to the corresponding corner points have been kept fixed to minimize the computation cost. 

The best model among the candidates is searched by using Akaike's Information Criterion (AIC). 

The method automatically determines the appropriate number and location of knots together with 

optimal vector of shape parameter values.  
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1. INTRODUCTION 

In the scientific world, data arises from various sources. It 

may come from some experiment, from a function, or 

from any other phenomena. Data fitting and 

visualization with splines is one of the important 

technologies in the area of computer graphics and 

scientific visualization. Various authors, in the last 

decade, have contributed in this direction. For brevity, 

the reader is referred to [6, 8-12].  

 

If we have to make a good model from measurement 

data, having a complicated underlying data, it is difficult 

to approximate it by a single polynomial. In this case, a 

spline [4] is one of the most appropriate class of 

approximating functions. The key to using a spline is the 

determination of good knots [6, 8]. To obtain good 

approximation, one needs to place the knots as precisely 

as possible. In such cases, we have to deal with knots as 

variables. Then the problem becomes a continuous 

nonlinear and multivariate optimization problem with 

many local optima. 

 

The underlying evolutionary scheme, in this paper, is 

based upon a family of spline, which has some extra 

features in terms of shape parameters in its description. 

These shape parameters, sitting between each two 

consecutive control points, have the capability to control 

the curve between the control points. They help the 

curve to get tight or loose depending upon the need of 

the user. It is desired, using the Genetic Algorithm (GA) 

approach [5], to optimize the shape parameters so that 

an optimal spline fit is gained to the target data raised 

from the outlines of the two dimensional shapes.  

 

In addition, some definiteness is also incorporated in 

the successive solutions in terms of finding appropriate 

knots in the spline solution. That is, the knots, 

corresponding to the corner points [2-3], will be kept 

fixed in the whole genetic process to make the algorithm 

evolutionary. Detecting the corner points is one of the 

important phases of the algorithm. It will help to 

incorporate some determinism in the search space of 

solutions of knots. 

 

Given a well-defined search space in which each solution 

is represented by a bit string, called a chromosome, a 

GA [5] is applied with its three genetic search operators 

(selection, crossover and mutation) to transform a 
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population of chromosomes with the objective of 

improving the quality of the chromosomes. 

 

The individual bits of a chromosome are called genes, 

which will be representing the knots and the shape 

parameters in our case. Before the search starts, a set of 

chromosomes is randomly chosen from the search space 

to form the initial population. The three genetic search 

operations are then applied one after the other to obtain 

a new generation of chromosomes in which the expected 

quality over all the chromosomes is better than that of 

the previous generation. The process is repeated until 

stopping criterion is met. Finally, the best chromosome 

of the last generation is reported as a final solution.  

 

This work is a collection of various phases in the 

process of data visualization. It considers data arose from 

any phenomena, and a parametric form of B-Spline is 

used to achieve best approximation curve 

representation. In order to aid the GA, a corner detection 

algorithm has also been used to add some determinism 

and make the algorithm evolutionary. The achievement 

of corner points is of great importance. It helps to 

minimize the time for the visualization of the data as the 

number of iterations, in this case, reduce during the 

running of GA. 

The organization of the paper is as follows. Section 2 

gives a brief description of the rational spline method. 

The idea of corner detection is explained in Section 3. 

The curve fitting technique is discussed in Sections 4. 

The practical results are demonstrated in Section 5 and 

the paper is concluded in Section 6. 

 

2. THE SPLINE MODEL 

Modeling by splines [4] has got a lot of popularity in 

various applied field of studies, specifically including 

Computer Graphics and Visualization. This work is also 

based upon a rational spline model as an important 

component of the whole process. The idea of curve 

design, for any given data set, has been attempted to 

give an optimal solution in terms of a spline. Using this 

method, one can generate the curve segments for any 

given number of data points. Joining these segments, we 

can generate the desired Design Curve. The curve thus 

obtained will be 
1C . The procedure for curve design is 

as follows. 

 

Let  ,, ZiRF
m

i ∈∈  be data points given at the 

distinct knots ,, ZiRti ∈∈  with interval spacing 

.0: 1 >−= + iii tth  Also, let ,, ZiRD
m

i ∈∈  denote 

the first derivative values defined at the knots. Then the 

generalized form of the rational cubic, in the form a 

parametric 
1C  piecewise piecewise rational cubic 

Hermite function ,: mRRP →  is defined by 
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This form is economical for computational purposes. We 

have made use of a rational Bernstein-Bezier 

representation, where the control points 

{ }1,,, +iiii FWVF  are determined by imposing the 

following Hermite interpolation conditions: 

 

( ) ii FtP =  and 
( )( ) ZiDtP ii ∈= ,1

. (4) 

 

In most of the applications, the tangent information 

are not provided. We define a distance-based choice for 

tangent vectors iD  at iF  as follows: 

 

For open curve: 
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Fig. 1. Spline with Local interval tension for various increasing 

values. 
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For closed curve: 
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This choice of tangents provides nice and pleasing 

results. 

 

We observe the following properties of the 

interpolant defined by Eqn. (1) 

 

 
 

Fig. 2. Spline with global tension for various increasing values. 

 

(a) For r = 3, the rational cubic redces to a cubic 

(Hermite Cubic) spline. 

(b) The spline curve always passes through iF  and 

1+iF . 

(c) If ,∞→ir  then the curve exhibits the interval 

tension behavior to the curve and is pulled towards 

the straight line joing the points iF  and 1+iF . That 

is, the curve approaches to the linear interpolant. 

 

(d) If ,0→r  then the spline curve gets loosened. 

 

The demonstration of the spline scheme has been made 

in Fig. 1 and Fig. 2. Fig. 1 shows local tension behavior 

between two data points for corresponding shape 

parameter values as 1, 3, 5, 10, and 100. Similarly, Fig. 

2 displays global tension behavior between all data 

points for corresponding shape parameter values as 1, 3, 

5, 10, and 100. Some more examples would be 

experimented at the end of the paper when a complete 

algorithm demonstration is made for automated selected 

values by the evolutionary algorithm. 

 

3. CORNER DETECTION  

The corner points are those points which partition the 

data into various pieces. Corner detection is normally 

related to detection of high curvature points in planar 

curves. A number of approaches have been proposed by 

researchers [2-3]. This paper proposes the simple 

technique based on the curvature analysis [3]. The 

corner points are searched on the basis of computation 

of high curvatures at each data point. The details of this 

procedure are as follows.  

 

We approximate the curvature )(iC k  at each 

contour point ),( iii yxP =  as follows:   

ikik
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where 

( )kikiiik yyxxa ++ −+= 1, , 

( )kikiiik yyxxb −− −+= 1, . 

A threshold value T for )(iC k  is set in such a way that 

a point iF   is a corner point if: 

• )(iC k takes local maxima. 

• TiC k >)( . 

The value of k depends on several factors, such as the 

closeness of the data points. Without threshold value, the 

algorithm is too sensitive to small variations of )(iC k . 

 

The demonstration of the corner detection scheme 

has been made in Fig. 3. A data of 451 points, for the 

outline of Times Roman digit “5”, has been tested. One 

can see that 9 corner points have been detected. Some 

more examples would be experimented at the end of the 

paper when a complete algorithm demonstration is 

made. 

 

4. CURVE FITTING 

In order to use GAs in optimization problems, some 

parameters of interest in the system to be optimized have 

to be chosen. These parameters are called design 



 182 

variables. In this work the following parameters have 

been used: 

 

 
 

 

Fig. 3. Detection of corner points on the outline data of digit 

“5”. 

 

• the positions of the spline curve control vertices 

(corner points together with other initially 

selected points in this case), and 

• the shape parameters 121 ,....,, −nrrr . 

Then, they are represented by some set of strings coded 

in binary or other codes.  

 

All initially selected data points correspond to single 

genes in the bit string of a chromosome. In this 

formulation if a gene is equal to 1, we put a knot at the 

corresponding data point. These knots determine the 

control points needed to approximate the underlying 

curve outline. Since we are applying Splines with shape 

parameters, therefore, the shape parameters associated 

with the pair of control points are also to be optimized, 

which makes the problem consisting of two search 

spaces at the same time. One search space is related to 

the optimization of the interior knots, while the other one 

to the positive weights associated with the calculated pair 

of control points. The weights consist of genes consisting 

of numbers, which can be positive real or integers. For 

example,  

 

10  45  67  98  34  99 

 

represents a valid gene in our case. The dual space 

search makes our algorithm a "Nested Genetic 

Algorithm". 

 

The gene strings representing the knots and shape 

parameters form the initial population. Once the 

population has been defined, a fitness function or 

objective function that measures the behavior of each 

individual in its environment has to be defined. This 

function provides a direct indication of the performance 

of each individual to solve the optimization problem 

subjected to the imposed constraints from the 

environment. With the population ranked according to 

the fitness, a group of chromosomes are selected from 

the population. 

  

The method used for selection in our algorithm is the 

Roulette-wheel selection. The crossover used is the 

simple double point cross over both for the bit string 

chromosomes and the chromosomes representing shape 

parameters between the control points. The probability 

of crossover has been taken as 0.7 for both. 

 

The mutation used for the population consisting of bit 

strings is just flipping the bits randomly. For the shape 

parameter population, it is evident that we can not use 

the same scheme, therefore the following strategy has 

been adopted: 

 

1) For  each gene in the chromosome repeat 

2) Generate a random number uniform in the 

interval [0,1]. If the value is less than or equal 

to the probability of mutation, then go to step 

3. Otherwise, go to step 5. 

3) Generate a random integer number uniform in 

the interval zero and the gene length L. Go to 

the gene having the index same as the 

generated number. 

4) Generate another random integer number and 

replace the previously selected number with it.  

5) Move to the next gene. 

 

The probability of mutation M is taken to be 0.001 

for bit string chromosomes and 0.01 for number 

chromosomes. 

 

In addition to the conventional genetic control 

parameters (crossover and mutation), another control 

parameter knot ratio R has also been used. Akaike's 

Information Criterion (AIC) [1] is used as a fitness 

measure. By using AIC we can choose the best model 

among the candidate models automatically. The AIC is 

based on the the following measurement: 

 

( ) ( ){ } ( ) ( ){ }{ }∑
=

−+−=
N

j
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1

22

2                                               

(5) 

where N is the number of data points. It should be noted 

that the smaller value of Eqn. (5) gives better fitness. The 
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( )tSx  and ( )tSy  are the x and y components 

respectively of the approximated spline ( )tS  over the 

data F and jw  is the weight of data, taken to be 1 for 

all data points in our case. The subscript of Q means the 

dimension of the data.  

 

We also propose a parameter which we have named 

as decimation. This parameter enables the data to be 

selected interval wise without loosing the contour of the 

input data as well as the corner points determined by the 

corner detection algorithm. This has been used in order 

to decrease the gene length of the chromosomes. 

 

In the context of genetic algorithm, a Roulette wheel 

selection and a double point crossover has been used. 

The probability of crossover C is taken to be 0.7 and the 

probability of mutation M is taken to be 0.001, while 

5.00 <≤ R  has been used. In case of the data in Fig. 

1a, a decimation of 4 has been used while in case of the 

data in Fig. 2a, it has been kept as 2. 

 

The summary of the algorithm is as follows: 

1. Input the data to be fitted. 

2. Input the control parameters. 

3. Find corner points using corner detection 

algorithm 

4. Create initial populations, for knots and 

shape parameters, by using random 

numbers. 

5. For each individual in the knot population 

make the bits corresponding to the 

significant points as 1. 

6. For each individual compute data fitting and 

obtain the fitness value. 

7. If total number of generations exhausted, 

stop the computation, otherwise go to step 

8. 

8. Do selection by using the fitness values. 

9. Do crossover and make the individuals of 

the next generation. 

10. Do mutation and go back to step 5. 

 

5. DEMONSTRATION 

This section is meant to demonstrate the scheme tested 

on two data sets. These data sets have been taken by 

detecting the boundary of the images, in Fig. 4 and Fig. 

6, after scanning. The Sobel edge detector [7] has been 

used to compute the boundary data shown in Fig. 5(a) 

and Fig. 7(a) respectively. 

 

The Fig. 5(a) is composed of 1524 planar data points, 

after which were reduced to 381 points after applying a 

decimation of 4. The corner detection algorithm detected 

17 corner points (see Fig. 5(b)). Fig. 5(c) is simply a 

cubic spline fit to the corner points. The evolutionary 

algorithm was run for 120 generations with a population 

size of 100. The algorithm converged at 40th generation 

(see Fig. 5(d)). 

 
Fig. 4.  A bitmapped flower image. 

 

 

 

 

 

(a) 

(b) 

(c) 
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Fig. 5. (a) The outline data of the flower image shown in Fig. 4, 

(b) After detecting the corner points as “circles”, (c) Spline 

approximated to the corner points before running GA, (d) 

Spline fit at 40th generation, it converges (the extra points were 

obtained as “bullets”). 

 

Fig. 7(a) is composed of 1620 planar data points, which 

were reduced to 406 points after applying a decimation 

of 4. The corner detection algorithm detected 9 corner 

points (see Fig. 7(b)). The evolutionary algorithm was 

run for 120 generations with a population size of 100. 

Fig. 7(c) is simply a cubic spline fit to the corner points. 

The evolutionary algorithm was run for 120 generations 

with a population size of 100. The algorithm converged 

at 50th generation (see Fig. 7(d)). 

 

 
Fig. 6. An Arabic alphabet “Hamza”. 

 

 
 

 

 

 

 
 

 

 
Fig. 7. (a) The outline data of a bitmapped image, (b) After 

detecting the corner points “circles”, (c) Spline approximated to 

the corner points before running GA, (d) Spline fit at 50th 

generation it converges (the extra points were obtained as 

“bullets”). 

 

6. CONCLUDING REMARKS 

This paper has introduced a technique to represent two 

dimensional shapes by data fitting using genetic 

algorithm and spline idea. The scheme presented is 

effective in the determination of the appropriate number 

of knots and their locations simultaneously for as large 

data as available. Moreover, the determination of shape 

parameters also help to get a reasonable approximation. 

The genetic algorithm is partly aided by the corner 

detection for the determination of corner points. These 

corner points are important in capturing the shape of the 

data.  

 

Some of the suggested future work directions may be 

as follows. Instead of rational splines, one can think of 

using the Non-rational splines to be used, incorporating 

the optimization of weights. This might help to reduce 

the computation cost to a significant amount. This work 

(a) 

(b) 

(c) 

(d) 

(d) 
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is in progress with the author and expected to be sent for 

publication as a subsequent paper. 

 

Use of Parallelism is another idea to be introduced for 

faster visualization of the data. In this case, the algorithm 

needed to be redesigned. It is expected that the load of 

computation will be concentrated in steps 5 and 6 of the 

algorithm in Section 4. We can apply parallel computing 

here to save computational time. The authors are 

currently looking for a practical implementation of such a 

parallel algorithm. 
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