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ABSTRACT 

 

In this paper, we apply the Constructive Solid Analysis (CSA) method developed recently to 

heterogeneous material modeling and analysis. The key idea in the methodology is that the 

hierarchy in the description of the geometry is mirrored by an identical hierarchy in the analysis 

fields guided by the appropriate governing equations. It is shown that the method is ideal for 

handling the multi-phases in the heterogeneous material microstructure, especially when the 

microstructure is subject to iterative change which, arises during microstructure design. The 

effective elastic properties of various 2D composites and porous material microstructures, including 

random microstructures, are evaluated to verify the procedure. The results are in good agreement 

with those obtained using the finite element method. 

 

Keywords: heterogeneous material, composites, porous material, constructive solid geometry, 

constructive solid analysis. 

 

 
1. INTRODUCTION 

Heterogeneous materials such as porous materials, fiber 

reinforced composites and particle reinforced composites 

have been used extensively in engineering applications 

due to their excellent properties. Typically, the analysis 

of these materials is through the decomposition of the 

problem into a macro-scale problem and a micro-scale 

problem based on the assumption that there exists a 

Representative Volume Element (RVE) that can describe 

the periodic microstructure. The effective properties are 

determined by a homogenization procedure. The 

heterogeneous structure is then replaced by an 

equivalent homogeneous material having the calculated 

effective properties. The analytical/semi-analytical 

models, such as the self consistent model, for 

determining the effective properties often yield 

inaccurate results when the volume fractions of second 

phase are high or the difference between the properties 

of the second phase and the matrix is large. This is due 

to the fact that the analytical model considers the volume 

fractions of the various phases in the material and 

ignores the detailed microstructure of the material. To 

overcome the limitations of analytical methods, the finite 

element method is applied with either a unit cell 

representation (see for example [17]) or homogenization 

theory [2],[5] to solve the microscale problem. The 

homogenization theory is known to give more accurate 

results than the unit cell method [6], but the unit cell 

method is more popular due to its simplicity, adequate 

accuracy for most applications and compatibility with the 

existing finite element software. 

 

The material microstructure design is an inverse 

homogenization problem that seeks optimized 

microstructure of the material to achieve given property 

values. In the literature, the design of the microstructure 

of the heterogeneous material is in general formulated as 

a topology optimization of the RVE. [4],[8],[13],[16] The 

microstructure obtained through topology optimization 

may be very complex, and therefore very difficult to 

manufacture. Very few studies have addressed shape 

optimal design at microscale. Thus, at present there 

appear to be no solutions to the problem of determining 

the optimal position, shape, size and orientation of 

inclusions or voids in a matrix to achieve a required 

effective property.  

 

A critical computational challenge to microstructure 

design is the need for iterative changes to the geometry 

and position of the microstructural phases such as 

inclusions and voids followed by reanalysis. The 

conventional finite element analysis procedure is poorly 

integrated with the design problem and, the design 

techniques don’t take cognizance of the analysis 

problem; they assume that an efficient analysis 

procedure exists to evaluate any design regardless of the 

complexity of the design. If the finite element method 

were to be applied to analyze and thereby design the 
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microstructure, they would require a large number of 

elements to capture the rapidly changing fields in the 

microstructure due to the heterogeneity, which results in 

a high computational cost. This is even worse during 

microstructure design, which requires iterative 

modification of the microstructures until the optimal one 

is determined. Any changing of the microstructure, such 

as resizing or relocating the particles, often needs a re-

meshing of the whole microstructure and a complete re-

analysis.  

 

In this paper, we apply a recently developed hierarchical 

analysis method termed Constructive Solid Analysis 

(CSA) [12] to heterogeneous material modeling and 

analysis. Firstly, we describe the CSA method. The key 

idea in the methodology is that the hierarchy in the 

description of the geometry is mirrored by an identical 

hierarchy in the analysis fields guided by the appropriate 

governing equations. The method is implemented with a 

NURBS based meshless, field discretization. We then 

apply the method to model and analyze microstructures 

of heterogeneous material. It is shown that the Boolean 

operations  implemented in the CSA procedure can very 

naturally handle changes in size and locations of the 

inclusions and voids in the heterogeneous material 

microstructures. The developed methodology is finally 

verified by evaluating the effective elastic properties of 

various 2D composites and porous material 

microstructures, including random microstructures. 

 

2. CONSTRUCTIVE SOLID ANALYSIS 

At the present time, a naturally hierarchical procedure, 

namely Constructive Solid Geometry (CSG) is well 

established for the creation of geometry [10],[15]. The 

constructive procedure describes a complex object 

through Boolean operations on the primitives. But, the 

analysis (commonly through the finite element method) 

is carried out only on the final geometry, in other words, 

the discretized analysis fields such as displacement fields 

are defined over the complex design domain. Therefore, 

a change in the geometry of even one primitive 

necessitates the reconstruction of the final geometry and 

remeshing of the final geometry. 

 

The CSA method achieves an integration of design and 

analysis by emulating (during analysis) the hierarchical 

procedure used in Constructive Solid Geometry. The 

analysis on the final complex entity is decomposed into 

analyses on simple primitives. Since the analysis is 

carried out on the fields defined over the primitives, 

modifications to the final geometry do not require 

remeshing of the final geometry. A brief description of 

the CSA algorithm is presented in the following 

subsection. A more detailed description of the 

methodology can be found in [11],[12]. 

2.1 Problem statement 

The boundary value problem formulated through CSA is 

defined as follows: 

 

Given: 

Design domain Ω ,  

Design boundary Γ , 

Boundaries tΓ  and uΓ  

Boundary conditions on fields u  and t  as 
u

u uΓ = %  and 

t
t tΓ = %  

Find:  

Field variableuΩ%  over the domain Ω  

Such that:  

1 2{ , , , }nu u u u= L , where iu , 1, ,i n= L  are fields 

defined over the primitives iΩ  constituting the final 

geometry and {} refers to the set operations on all iu  

constituting u . The domains iΩ  satisfy the property 

1 2* * * nΩ = Ω Ω ΩL , where *  represents a 

regularized Boolean operation:   

U  (Union),I  (Intersection), and−  (Subtraction) 

Subject to:  

Field variable displacement u or traction t  constraints 
across primitive interfaces.  

 

2.2 Algorithm Outline 

An outline of the algorithmic steps involved in the 

analysis procedure are as follows:  

1. From the geometry construction step, determine n  

primitives , 1, ,i i nΩ = L , such that 

1 2* * * nΩ = Ω Ω ΩL . 

2. Given iΩ  and the Boolean operations on them,  

determine Γ  in terms of the boundaries of each 

primitives 

3. Formulate the mechanics (boundary value) problem 

a) Form individual boundary value problem for 

each Boolean operation 

b) Combine to formulate the system level 

analysis problem 

4. For each iΩ , discretize the field over the domain 

5. Form the matrix system for system level solution. 

6. Solve 

 

2.3 Governing Equations 

The balance of mechanical energy for a static system 

(neglecting the kinectic energy term) in the rate form is: 
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EW P=&                                                                     (1) 

where,  

W dσε
Ω

= Ω∫& &                                                           (2) 

EP tud bud
Γ Ω

= Γ + Ω∫ ∫& &                                          (3) 

are the rate of internal energy and the power of external 

work respectively. 

For the union problem, the balance of mechanical 

energy for the static problem can be stated as: 

P Q

Q P

P Q

P Q E

Q P E

P Q E

W P

W P

W P

−

−

∩

−

−

∩

=

=

=

                                                          (4) 

Since the analysis is carried out on the primitives rather 

than the final geometry, the field associated with the 

complex entity needs to be defined in terms of the fields 

associated with the primitives. Thus, a key to the CSA 

method is the definition of the field over the composite 

entity in terms of primitives as  (see Figure 1): 

in 

in 

in 

P P Q

P Q P Q P Q P P Q Q P Q

Q Q P

u

u u u u c u c u

u

−

∪ ∩ ∩

−

 Ω


= ∪ = = + Ω
 Ω

                                                                                   (5) 

Here, Pc , Qc  are constants to be selected and Pu  and 

Qu are the field definitions for the domains P  and Q  

respectively. It can be shown that 

1

0 , 1

P Q

P Q

c c

c c

+ =

≤ ≤
                                                         (6) 

Since the  balance of mechanical energy is satisfied at 

every instant, and since it is required for the power of 

external work  at the boundaries of P Q∩Ω  to be equal 

and opposite to that at the corresponding boundaries 

of P Q−Ω   and Q P−Ω , an approximate statement can 

be constructed as: 
0

0
min ( )

PoutQ QoutP

P Q P Q Q P P P Q QW W W t u d t u d d
τ

τ− ∩ −

Γ Γ

+ + − Γ − Γ∫ ∫ ∫& & & & &

 

Subject to:
on 

on 

P Q P QinP

P Q Q PinQ

u u

u u

∩

∩

= Γ

= Γ
                      (7) 

whereτ  is the time step duration. The body force has 

been neglected for simplicity. 

 

We consider the intersection problem as a special case of 

subtraction problem: ( )P Q P P Q= − −I . For the 

subtraction problem, the intersection region P Q−Ω is 

eliminated: 

0
P QP Q EW P
∩∩ = =&                                                    (8) 

 
 

Figure 1. The definitions of domains and boundaries for the 

Boolean operation. 

 

Carrying out the time integration, we get the governing 

equations for linear elastic static case in variational form. 

For a generalized union problem involving two 

overlapping primitives P and Q, the variational problem 

can be stated as: 

min

PoutQ QoutP

P Q P Q Q P P P Q Q
W W W t u d t u d− ∩ −

Γ Γ

+ + − Γ − Γ∫ ∫

    Subject to
on 

on 

P Q P QinP

P Q Q PinQ

u u

u u

∩

∩

= Γ

= Γ
                       (9) 

The variational statement for the subtraction problem 

can similarly be written as: 

min

PoutQ QoutP

P P P Q QW t u d t u d
Γ Γ

− Γ − Γ∫ ∫             

Subject to 0P QW ∩ =                                                (10) 

The details of the procedure can be found in [12]. Note 

that this approach is philosophically and fundamentally 

different from domain decomposition techniques for 

parallel finite element analysis (see for example [3]). The 

goal in domain decomposition approaches is to 

decompose a mesh defined over the domain into sub-

meshes for parallel solution and therefore these 

procedures do not address the challenge of analyzing 

iteratively changing geometries. 

 

 

 

QP−Ω

PQ−ΩQP∩Ω

QinPΓ

QoutPΓ

PinQΓ

PoutQΓ

Q 

P 
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2.4 NURBS Discretization 

The CSA procedure is independent of the discretization 

scheme employed for numerical solution. In our 

implementation, a NURBS (Non-Uniform Rational B-

Spline) representation is used to define the primitive 

geometries as well as the analysis fields and material 

fields defined on the primitives. NURBS are currently the 

most general mathematical representation available for 

parametric curves and surfaces. Due to the efficiency of 

its polynomial basis, NURBS can represent complex 

geometries with a very small number parameters [14].  A 

NURBS surface is defined as: 

0 0

0 0

( ) ( )
, ,

( , )     

( ) ( )
, ,

n m

n m
i j

i j

N u N v
i p j q

u v w
ij

N u N v w
i p j q ij

= =

= =

=∑∑
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ijS P

 

                                                                                 (11)                                  
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Where ijP   and ijw   are the ijth control point vector and 

the weight associated with the control point. The above 

expression can be recast in the following form: 

( , ) ( , )     I I

I

u Nξ η ξ η=∑ P                               (14) 

Where 

0 0

0 0

( ) ( )
, ,

( , )     

( ) ( )
, ,

n m

I n m
i j

i j

N N
i p j q

N w
ij

N N w
i p j q ij

ξ η
ξ η

ξ η= =

= =

=∑∑
∑∑

                               

(15) 

IP  are the set of control points used to discretize the 

field with the index I taking on all possible values of the 

combination of indices. This discretization leads to a 

meshless analysis, and compare very favorably to 

element free Galerkin approaches [1]. Furthermore, 

NURBS are more flexible in representing local variations 

of the geometry as well as the field variables.  

 

2.5 Formulation of the Discretized Solution 

System 

The application of the boundary conditions in finite 

elements or boundary elements employing the standard 

Lagrangian interpolation is simple since nodes can be 

placed at the point of application of the boundary 

condition. However, in the case of a NURBS 

representation, the control points need not coincide with 

the boundary. Also, unlike in finite elements, the value of 

the shape function corresponding to a control point is 

not unity at that node. Thus, even if the control point 

were to be coincident with the location of the boundary 

condition, direct application of the boundary condition is 

not possible since the specified field value will be 

distributed to control points influencing the point under 

consideration. The same is true for the constraints that 

arise due to Boolean operations on the primitive fields in 

Constructive Solid Analysis. A Lagrange multiplier 

scheme is adopted for the application of the constraints 

on the primitives as well as the boundary conditions. For 

the sake of simplicity, only the methodology 

implemented for linear elastic problems is illustrated 

here. Discretizing the displacement and Lagrange 

multipliers over Ω  and uΓ as: 

I I

I

u N u=∑%                                                          (16) 

K K

K

λ φ λ=∑%                                                         (17) 

where, IN  are the NURBS basis functions for the 

displacement field, and Kφ   are the NURBS basis for 

discretization of the Lagrange multipliers. 

/ ( , )B dN d u v=  is the strain displacment matrix, 

and further I I

I

B uε =∑ . Stationarity of the problem 

Lagrangian with respect to λ  and u  gives: 

 

0

T u fK G

dG λ
 −    

=     
    

                                     (18) 

Where: 

u

T

IJ I J

T

KI K I

K B DB d

G N dφ
Ω

Γ

= Ω

= Γ

∫

∫
                                                 (19) 
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t

u

T T

I I I

T

K K

f N bd N td

d udφ

Ω Γ

Γ

= Ω+ Γ

= Γ

∫ ∫

∫

%

%
 

The solution to the union problem involves the 

application of displacement constraints on P Q∩Γ . Insight 

into the formulation of the solution system for this 

problem can be obtained from the discretized form of the 

first order necessary conditions for the problem. Ignoring 

the applied boundary conditions for clarity: 
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where,  
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The subscripts P and Q refer to the primitives to which 

the discretizations belong. The subscripts on the stiffness 

terms P QK −  refer to the domain of integration and the 

subscripts on λ refer to the domain on which the 

constraint is imposed.  

 

 

 

3. MICROSTRUCTURE MODELING AND 

ANALYSIS THROUGH CSA 

We now apply CSA to model and analyze micro-

structure of heterogeneous materials. We define 

material/analysis dominated union as:  (Figure 2) 

P Q∪  (P dominated): 1, 0P Qc c= = , Material in 

intersection region is identical to that in P 

P Q∪  (Q dominated): 0, 1P Qc c= = , Material in 

intersection region is identical to that in Q 

 

 
Figure 2. Material/analysis dominated union 

 

The voids in the matrix can be modeled by CSA 

subtraction operation while the inclusions in the matrix 

can be modeled by an inclusion dominated union 

between the matrix and the inclusions (Figure 3). The 

CSA procedure can naturally model the heterogeneous 

material even if the second phase is random in size, 

shape and location. An example of constructing a 

complex composite RVE through CSA is illustrated in 

Figure 4. CSA method can be coupled with either unit 

cell method or homogenization theory to evaluate the 

properties of the RVE. Note that with CSA method, any 

modification of the microstructure does not necessitate 

re-meshing and the re-analysis is only necessary on the 

primitives affected by the changing microstructure. 

 

 
a) 

 
b) 

Figure 3. Modeling RVE through CSA. a) Use subtraction to 

model voids in matrix b) use inclusion dominated union to 

model inclusions in matrix 

 



 176 

 
Figure 4. Construction of a complex RVE of composites through 

inclusion dominated union 

 

4. NUMERICAL EXAMPLES 

For simplicity, the unit cell method is coupled with the 

CSA method to predict the effective elastic properties of 

microstructures. Plane stress condition is assumed in all 

the numerical examples. Four pairs of microstructures 

are simulated and the results obtained by CSA are 

compared with that obtained by FEA. jNURBS [18] is 

applied to carryout the CSA analysis. jNURBS is a 

design-analysis integrated CAD framework that uses 

NURBS representation of the fields for meshless analysis. 

CSA method is implemented as an extension package in 

jNURBS. Object-Oriented Finite Elements [9], an image-

based finite element analysis software package for 

material microstructure simulation developed at NIST, is 

applied to carry out the finite element analysis. The 

images used by OOF were generated using MATLAB. 

 

In each problem, the effective Young’s modulus in x  
and y direction were evaluated for both particle 

reinforced composites and the corresponding porous 

material with the particles replaced by voids. The volume 

fractions of the second phase, which is particles for 

composites and voids for porous materials, are 40%. The 

material properties are: 72matrixE GPa= , 

0.3333matrixv = , 400inclusionE GPa= , 

0.3inclusionv = . The first pair of problems are the 

square edge packed composite/porous material with 

circular second phase (Figure 5). The control point 

distributions for each case are illustrated in Figures 6 and 

Figure 7. Note that the control points arrangements on 

the primitives are independent of each other. In the 

second pair of problems, composites/porous material 

with rectangular edge packed elliptical second phase are 

considered. (Figure 8) The ratio between the long axis 

and the short axis is 2:1 and the ratio between the width 

and the height of the RVE is 4:3. In the third problem, 

microstructures with the circular inclusions/voids random 

in size and locations are analyzed (Figure 9), while in the 

fourth pair of microstructure, the elliptical 

inclusions/voids are random in size, direction and 

location. (Figure 10) 

 

The simulation results of the composites microstructure 

are listed in Table 1 and the simulation results of the 

porous material microstructures are listed in Table 2. The 

results obtained by FEA and CSA are in very good 

agreement. For microstructures with rectangular packed 

elliptical second phase, the effective properties are very 

different in x and y direction, but the effective properties 

are almost identical in x and y direction if the elliptical 

second phase is random (the fourth pair of 

microstructures). In the third and fourth pair of 

microstructures, it is shown that CSA can naturally 

handle complex microstructures with multiple, random 

inclusions/voids. This is essentially important for material 

microstructure design because the microstructure design 

requires iterative modification of size, location and shape 

of the second phase. Our next step is to apply CSA 

method to material microstructure design.  

 

       
 

Figure 5. RVEs for square edge packed composites/porous 

material with circular particles/voids 

 
Figure 6. Control points distribution in RVE for square edge 

packed composite with circular inclusions. The blue ‘+’s are 

control points for the matrix while the red ‘*’s are the control 

points for the inclusion. 

 
Figure 7. Control points distribution in RVE for square edge 

packed porous material with circular voids. The blue ‘+’s are 

the control points.  
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Figure 8. RVEs for rectangular edge packed composites/porous 

material with elliptical particles/voids 

 

 
 

 
 

Figure 9. RVEs for random packed composites/porous material 

with circular particles/voids 

 

 
 

 
 

Figure 10. RVEs for random packed composites/porous material 

with elliptical particles/voids 

 

 

Microstructure 

Ex/Ey (FEA 

method) 

Ex/Ey 

(CSA 

method) 

Composite with square edge 

packed circular particles 

125GPa/ 

125GPa 

125GPa/ 

125GPa 

Composite with rectangular 

edge packed elliptical 

particles  

146GPa/ 

117GPa  

145GPa/ 

117GPa  

Composite with random 

packed circular particles 

124GPa/ 

122GPa 

121GPa/ 

125GPa 

Composite with random 

packed elliptical particles 

123GPa/ 

125GPa 

122GPa/ 

121GPa 

 

Tab. 1. Simulation results of composites 

 

 

Microstructure 
Ex/Ey (FEA 

method) 

Ex/Ey 

(CSA 

method) 

Porous material with square 

edge packed circular voids 

28.2GPa/ 

28.2GPa 

28.2GPa/ 

28.2GPa 

Porous material with 

rectangular edge packed 

elliptical voids  

36.5GPa/ 

16.5GPa  

36.6GPa/ 

16.6GPa  

Porous material with 

random packed circular 

voids 

19.5GPa/ 

17.8GPa 

20.1GPa/ 

18.0GPa 

Porous material with 

random packed elliptical 

voids 

18.3GPa/ 

16.4GPa 

18.7GPa/ 

16.7GPa 

 

Tab. 2. Simulation results of porous material 

 

4. SUMMARY 

In the present paper, we applied Constructive Solid 

Analysis (CSA) method to heterogeneous material 

modeling and analysis. It was shown that CSA method 

can naturally handle the multi-phases in the 

heterogeneous material. The effective elastic properties 

of various 2D microstructures include composites and 

porous material with random particles and voids were 

evaluated and the results are excellent agreement with 

those obtained by finite element method. Our next step 

is to apply the method to microstructural design. 
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