
 153

An XML-Based Macro Data Representation

for a Parametric CAD Model Exchange

Jeongsam Yang1, Soonhung Han2, Joonmyun Cho3, Byungchul Kim4 and Hyun Yup Lee5

1PartDB Co. Ltd, jsyang@partdb.com

2Korea Advanced Institute of Science & Technology, shhan@kaist.ac.kr
3Korea Advanced Institute of Science & Technology, cjmyun@icad.kaist.ac.kr

4Korea Advanced Institute of Science & Technology, mir7942@icad.kaist.ac.kr
5Chungnam National University, hylee@cnu.ac.kr

ABSTRACT

A macro-parametric approach, which is a history-based method of parametric CAD model
exchange, has recently been proposed. CAD models can be exchanged in the form of a macro file
that comprises a sequence of modeling commands. As a set of event-driven commands, a standard
macro file can transfer the designer intent such as parameters, features and constraints. Moreover,
it is suitable for a network environment because standard macro commands are open and explicit,
and the data size is small. This paper introduces XML technology to represent the macro-
parametric exchange. Using XML to represent macro-parametric commands enables the
management of a large amount of dynamic content, Web-enabled distributed applications, and the
inherent characteristics of structure and validation.

Keywords: CAD model exchange; design intent; macro-parametric; XML

1. INTRODUCTION

During the last ten years, the manufacturers of the world
invested about a trillion dollars to convert or generate
their products as digital models [1]. The significant
assets of manufacturers now include CAD drafting,
three-dimensional solid models, assemblies, bills of
material, and engineering models for analysis and
simulation. Although the current trend calls for a digital
enterprise that integrates C3PE (CAD, CAM, CAE, PDM
and ERP), manufacturers have difficulty in reusing
existing product models because of the data loss during
the analogue to digital conversion. The RTI estimates
that the interoperability problem cost the members of
the US automotive supply chain at least a billion dollars
in 1999 [2].
There are two major approaches for information sharing
between different C3PE systems. One approach involves
a static interface of data exchange that translates models
through a neutral file such as the Standard for Exchange
of Product Model Data (STEP) and the Initial Graphics
Exchange Specification (IGES); in this approach, a
snapshot of the model is exchanged. The other
approach is to implement a dynamic interface using a
standardizing application program interface. The

application interface specification of the Consortium for
Advanced Manufacturing International provides a
standard programming interface that interfaces user
applications with CAD/CAM systems [3].
There are three methods for exchanging static CAD
models. The first uses a single CAD system throughout
the various disciplines of a company, without the need
for model exchange. However, in practice each
discipline needs a specialized CAD system, and
companies are heavily dependent on a single
commercial CAD system. In addition, the introduction of
a single CAD system is unsuitable for an extended
enterprise, especially in a distributed development
environment that requires the participation of various
organizations with heterogeneous CAD systems.
The second method uses direct translators between
different CAD systems. However, because the geometric
modeling kernels within CAD systems differ, data loss
and shape distortion occur during data translation.
Furthermore, costs increase because an enterprise that
uses N different CAD systems needs N(N-1)/2
translators.
The third method uses a neutral format such as STEP
(ISO-10303), IGEG (ANSI), VDA-FS, or DXF. A
preprocessor generates the neutral file from the native
format. A postprocessor receives the neutral file and

 154

converts it into the native format of the receiving CAD
system. Although this method needs two translations
and has twice the data loss, it is the recommended
method for most cases. One remaining problem of the
neutral format is that it does not retain parametric
information such as the designer intent but only the pure
boundary representation of the CAD model. The
boundary representation model without parametric
information presents difficulties for engineering changes
in a collaborative design process or in a configuration
design process; it also leads to an unexpected distortion
of shape.
To solve this problem, a macro-parametric method has
recently been proposed [4,5,6,7]. Incorporating CAD
model exchange based on design history, the macro-
parametric method exchanges the parametric
information of a CAD model as a design command
sequence between heterogeneous CAD systems. Based
on the macro-parametric methodology, this paper
proposes an exchange method that uses extensible
mark-up language (XML) technology to express a set of
standard modeling commands extracted from a CAD
model. This set of commands can be shared with other
CAD systems on the Internet.

Fig. 1. An overview for XML-based macro-parametric
representation

As shown in Fig. 1, a three-dimensional model shape
designed with Pro/Engineer was translated into a set of
the standard modeling commands in the form of an
XML data structure. The translated result was uploaded
to a database where it could be translated into other
CAD systems such as CATIA, SolidWorks or
Unigraphics. Unlike commercial CAD translators that
exchange geometry and topology using a CAD kernel,
the proposed method extracts aspects of the design
intent such as constraints, parameters, design history
information, and features from a CAD model. To

understand the semantics of the extracted information,
the method then uses XML to construct a vocabulary of
standard modeling commands.

2. RELATED WORKS

2.1 Exchange of Parametric Information

To define CAD models, Part 42 of the international
standard STEP ISO 10303 defines shape entities.
However, because it does not define expressions for
parameters, constraints and features, it cannot translate
the design parameters of a CAD model. Although Part
42 narrowly defines entities for constructive solid
geometry, the dimensions of such entities cannot be
parameterized [8]. Moreover, it contains no definitions
for modeling functions based on design history, such as
shelling, chamfering and drafting, though such
definitions are usually available in commercial CAD
systems.
A project called Enabling Next Generation Mechanical
Design (ENGEN) proposed an ENGEN data model,
which is a product data model with parameters, features,
design history, and constraints based on Part 42 of STEP
[9]. The purpose of the ENGEN project is to verify the
exchange capability of design intent, which is
represented by design parameters, constraints and
features. The exchange experiments use the CAD
systems of Pro/Engineer (PTC), I-DEAS (SDRC), and
CADDS5 (CV). Because the main focus of the ENGEN
project is to enable the exchange of models with
constraints, the ENGEN data model has insufficient
entities for the design history, and it cannot be used to
represent a history-based parametric model.
Varra and Anderson have suggested a solid model
construction history schema for exchanging parameters,
constraints, features and design history information [10].
The schema includes an implicit entity and structure for
the design process, which can exchange geometrically
restricted solids and the history-based model, along with
parameterized features.

2.2 XML Initiatives for Product Data

With the increasing popularity of XML on the distributed
environment, mapping CAD model data into XML seems
a logical way to make CAD models more accessible
through the Web. Examples of previous XML initiatives
include the following: materials property data markup
language (MatML), metal XML, product data markup
language (PDML), product definition exchange (PDX),
and universal commerce language and protocol (UCLP)
[11].
The use of XML for exchanging CAD models has been
studied by Rezayat, who converted a CAD model into an
XML-based knowledge base called knowledge-based
product development [12]. He proposed a DTD schema

 155

called CAD markup language that can express CAD
models in terms of limited boundary representation.
To make use of XML, the working group
ISO/TC184/SC4/WG 11 recently developed
implementation methods for STEP ISO 10303-28 titled
Implementation methods: XML representation of
EXPRESS schemas and data. These methods enable
XML to be used as a representation mechanism for
STEP-conformant schema and instance data [13,14].
Although XML schema is not as powerful as EXPRESS,
XML has potential for economy of scale because the
tools for XML technology will flourish on account of the
large number of users. Implementing all the details of the
specification of EXPRESS to ensure robust information
systems is difficult. One example is the EXPRESS
schema’s rule-based constraint. As shown in Fig. 2, the
EXPRESS schema can only use the command WHERE
to express constraints. The XML schema, however, offers
user-defined types of data and 44 keywords such as
Element options, Attribute values and Facet to describe
various types of constraints.

Fig. 2. Comparison of EXPRESS schema with XML schema

3. MACRO-PARAMETRIC METHODOLOGY

3.1 The Macro-parametric Approach

The macro-parametric approach is one of the history-
based parametric methods that learn from a database
recovery when a transaction log file is used for a crash
recovery. A transaction log file contains consecutive SQL
commands. To transfer a parametric CAD model that
includes the design history, a set of standard modeling
commands is defined and used as a neutral format. A
macro file records the modeling command sequence
issued during a session. It implicitly contains the design
intent, which is represented by constraints, parameters,
design history and features. The history of user
commands is recorded in a macro file, and the macro file
is used for a static model exchange. If these commands
are translated into the commands used in other CAD

system, the macro file regenerates the parametric model
inside the receiving CAD system.
Figure 3 shows the data exchange model used in the
macro-parametric approach. Mapping in the macro-
parametric approach comprises two levels: the schema
mapping between the user command set of a CAD
system and a standard command set; and the actual data
translation between the macro file of a commercial CAD
system and a standard macro file. To translate data
models between CAD systems, the macro file generated
by a commercial CAD system is translated into a
standard macro file, which is again translated into a
macro file of the receiving CAD system.

Fig. 3. Concept of the macro-parametric mapping

3.2 A Set of Standard Modeling Commands

To classify the modeling commands of commercial CAD
systems, we analyzed the common denominators of user
commands used in the following five commercial CAD
systems: CATIA, Unigraphics, SolidWorks, Pro/Engineer
and IDEAS. Using XML schema, we also defined a set of
144 standard modeling commands: 57 sketch
commands, 40 solid modeling commands, 23 surface
modeling commands and 24 constraint commands (see
Appendix A and B). A group of sketch commands was
submitted as a new work item to
ISO/TC/184/SC4/WG12, and progress has been made in
international standardization.

Fig. 4. Classification of standard modeling commands

 156

As shown in Fig. 4, the set of standard modeling
commands comprises four groups at the root level—
namely SKETCH, SOLID, SURFACE and
CONSTRAINT. The modeling commands are further
classified into four levels of concrete action.
A standard modeling command is made of consecutive
classification names; for example, the linear protrusion
command is Solid_Create_Protrusion_Extrude. Its XML
schema representation is shown in Fig. 5. In the schema,
result_object_name is the name of a protrusion feature
created by the command operation, profile-sketch is the
2D profile of protrusion, and flip indicates the protrusion
direction. The terms start_condition and end_condition
represent the beginning condition and the end condition,
while start_depth and end_depth represent the length of
the protrusion. The shape generated by the command
Solid_Create_Protrusion_Extrude is shown in Fig. 6.

Fig. 5. XML schema representation of
Solid_Create_Protrusion_Extrude

Fig. 6. The shape generated by the command
Solid_Create_Protrusion_Extrude

4. XML-BASED DEFINITION OF MODELING

COMMANDS AND EXPERIMENTS

4.1 XML Representation of Standard Modeling

Commands

XML separates semantics for context from syntax for
data. The structure of standard modeling commands,
which is described using XML schema definition
language, offers a dynamic and extensible information
skeleton to design the history and syntax.
Using XML for standard modeling commands has two
strong points. Firstly, XML is a widely accepted format
for data exchange and is suitable for the open data
architecture of application software. Closed architecture
is inconvenient for users. CAD models, for instance, last
for decades, whereas most CAD systems seldom last
more than a few years. Because of the potential risk,
users demand the deployment of open standards.
Moreover, XML can synchronize the speed of translator
development and the standardization of modeling
commands using some type of conformance testing such
as validation checking.
Secondly, the Web-based CAD data exchange (DEX)
service system can be easily implemented. The DEX
service can exchange CAD model data as an XML
message stream between heterogeneous CAD systems of
a distributed environment (Fig. 7). If two different DEX
systems adopt XML, loosely coupled, the DEX service is
not subordinate to the specific language or the
component model, and it can be applied to any
operating system. To develop an application for a
distributed environment without XML, the tight coupling
required by the two systems imposes a significant
amount of customization overhead. To enable
communication, an in-depth understanding of both
systems is required. In addition, communication between
tightly coupled systems requires a system-level interface
and a package oriented to a commercial system such as
RPC (remote procedure call), RMI (remote method
innovation), CORBA (common object request broker
architecture), or DCOM (Microsoft distributed
component object model).
Figure 7 shows a conceptual Web-based DEX service
that adopts the macro-parametric method and XML
technology. The macro-parametric organization that
standardizes modeling commands deploys a macro-
parametric description and schema in DEX service sites;
it also uses macro-parametric translator developers
through the HTTP protocol. A third-party macro-
parametric translator that conforms an up-to-date macro-
parametric description has been released. Each DEX
system provides a CAD model exchange service to C3PE
systems and local site users through the HTTP protocol.

 157

Fig. 7. Overview of the Web-based DEX service

4.2 XML Schema Design

As shown in Table 1, standard modeling commands are
classified as core commands (CC) and non-core
commands (NCC) based on the frequency of modeling
use (see section 3.2 and Appendices).

 No. of CC No. of NCC Sum

Sketch 30 27 57
Surface 17 6 23
Solid 22 18 40

Constraint 21 3 24

 90 54 144

Tab. 1. Classification of standard modeling commands

XML schema were designed for 90 of the standard core
commands (see Appendix A). The schema comprise
three layers. The first layer, MACRO_PARAMETRICS, is
the root element that shows the document conforms to
the macro-parametric methodology. As shown in Fig. 8,
the root element comprises four groups:
SKETCH_COMMANDS, SOLID_COMMANDS,
SURFACE_COMMANDS and
CONTRAINT_COMMANDS.
Each of the four groups or the root element is used as a
base element for subsidiary elements of standard
modeling commands. The second layer is made up of
command elements that are actually performed for
modeling. The command elements comprise 30 sketch
commands, 22 solid commands, 17 curve commands
and 21 constraints. These commands can be recorded
selectively within the root element
MACRO_PARAMETRICS. The third layer comprises
elements that define the parameters of each command.
These elements define the data type according to the
command parameters, thereby enabling XML validation.
The XML schema of Fig. 8 can represent the design
history by connecting the commands subordinately.

The SOLID_Create_Protrusion_Revolve command,
which is enclosed in the dashed box of Fig. 8, revolves
around a sketch and creates a solid as shown in Fig. 9.
Figure 10 defines the XML schema structure of
Solid_Create_Protrusion_Revolve. The structure is
composed of the following five elements:

• profile_sketch represents the sectional shape of the
revolution and the sketch plane, including the
revolving axis.

• flip represents the revolution direction of the
Boolean type.

• start_angle and end_angle indicate the beginning
angle and the last angle of the revolution.

• result_object_name of the STRING type represents
the name of the object generated by the revolution.

Fig. 8. The XML schema structure designed for the standard
modeling commands

 158

Fig. 9. Parameters of SOLID_Create_Protrusion_Revolve

(a) Schema document

(b) Instance document

Fig. 10. XML schema and instance of SOLID_
Create_Protrusion_Revolve

4.3 A Data Exchange Experiment

A data exchange experiment based on XML schema of
standard modeling commands has been accomplished.
Comprising 54 standard modeling commands, the Y-
model was exchanged between our own TransCAD and
the four commercial CAD systems Pro/Engineer, CATIA
V5, SolidWorks and Unigraphics.
Figure 11 shows the following selection of commands
from among the 54 commands of the Y-model:

• SELECT_Reference_Plane

• SKETCH_Create_2D_Line_2Points

• SOLID_Create_Protrusion_sweep

• SOLID_Create_Cut_Extrude.

Fig. 11. CAD model exchange experiment using an XML based macro fil

 159

The Y-model’s macro file, which was translated from
CATIA V9, was created according to the XML schema. It
contains the following commands:

• SELECT_Reference_Plane generates a two-
dimensional sketch plane.

• SKETCH_Create_2D_Line_2Points defines a
straight line between two points in the sketch plane.

• SOLID_Create_Protrusion_Sweep protrudes the
sketch according to a given path.

• SOLID_Create_Cut_Extrude cuts the section along
a flat plane.

The translated commands and parameters have been
stored in a database designed on the basis of the XML
schema. The commands are shown in database tables of
the lower right corner of Fig. 11. Accessing the modeling
history in a CAD model is difficult in conventional CAD
systems with file-based storage structures unless a user
activates the modeling history in a viewing window.
However, a database that uses standard modeling
commands is constructed as a user command unit of the
modeling history. Such a database can provide
concurrent access, data management at the logical level,
external reference, or change propagation [15].
Based on macro-parametric methodology, TransCAD is
a stand alone CAD modeler that allows validation of
XML schema and data interface with four commercial
CAD systems by means of an XML macro file.

5. CONCLUSION
An important business objective for the effective
application of product data is the mantra “create once,
reuse many times.” However, CAD model exchange
between different C3PE systems causes shape distortion,
and the loss of parametric information complicates
engineering change. Consequently, in many companies
the reuse of CAD models remains a serious problem.
The macro-parametric approach, which is an offshoot of
the history-based parametric method, enables parametric
information to be transferred as a sequence of standard
modeling commands. To represent a set of standard
modeling commands in a macro file, we have used XML
technology. XML representation of standard modeling
commands, which emphasizes the information
representation and meaning, provides open data
architecture for translator developers and standardization
communities. It is suitable for constructing a Web-based
DEX service that communicates with two loosely coupled
systems through the HTTP standard protocol.
We have used an XML macro file to exchange a CAD
model between our own TransCAD and the four
commercial CAD systems Pro/Engineer, CATIA V5,
SolidWorks and Unigraphics. In addition, we have
proposed a pilot database system that uses MS-ACCESS
to store the standard modeling command sequence.

Future research is needed on the implementation of non-
core commands, the extension of standard modeling
commands for complex models and harmonization with
the existing STEP Application Protocols of the ISO.

6. REFERENCES

[1] Crabb, H. C., The virtual engineer: 21st century
product development, SME/ASME Press, New York,
NY, 1998.

[2] Gregory, T., Interoperability cost analysis of the U.S.
automotive supply chain – Final report: RTI Project
Number 7007-03, Research Triangle Institute, 1999.

 [3] Application Interface Specification (AIS) Version
2.1: Technical Report R-94-PM-01, Consortium for
Advanced Manufacturing International Inc.,
Bedford, TX, 1994.

[4] Choi, K., Mun, D.-H and Han, S., Exchange of
CAD part models based on the macro-parametric
approach, International Journal of CAD/CAM
(www.ijcc.org), Vol. 2, 2002, pp 23-31.

[5] Mun, D.-H, Kim, B. and Han, S., A hybrid
parametric translator using the feature tree and the
macro file (in Korean), Transactions of the Society
of CAD/CAM Engineers, Vol. 7, 2002, pp 240-247.

[6] Kim, B.-C., Verification of the standard modeling
commands set by developing a geometric modeler
(in Korean), Master’s thesis, Korea Advanced
Institute of Sci. and Tech., 2002.

[7] Mun, D.-H, Han, S. and Oh, Y.-C., A set of
standard modeling commands for the history-based
parametric approach, Computer Aided Design, Vol.
35, 2003, pp 1171-1179.

[8] Pratt, M. J, Extension of the Standard ISO10303
(STEP) for the exchange of parametric and
variational CAD models, in Proceedings of the
Tenth International IFIP WG 5.2/5.3 Conference
PROLAMAT98, 1998.

[9] Anderson, B., ENGEN Data Model: a neutral model
to capture design intent, in Proceedings of the Tenth
International IFIP WG 5.2/5.3 Conference
PROLAMAT98, 1998.

[10] Barra, R. and Anderson, B., Draft implementor’s
guide solid model construction history: DRAFT
Minutes of WG12 Parametrics Meeting, October
2000.

[11] Kerer, C., Kirda, E. and Kruegel, C., XGuide - A
practical guide to XML-based Web engineering,
Lecture Notes in Computer Science, No. 2376,
2002, pp 104-117.

[12] Rezayat, M., Knowledge-based product
development using XML and KCs, Computer Aided
Design, Vol. 32, 2002, pp 299-309.

[13] Product data representation and exchange:
Implementation methods: XML schema governed
representation of EXPRESS schema governed data

 160

- ISO/WD 10303-28e2, ISO TC184/SC4/WG11
N202 (http://www.tc184-
sc4.org/SC4_Open/SC4_and_Working_Groups/WG
11/), 2002.

[14] STEP & XML White Paper: Technologies for Digital
Product Data Integration, European Marine STEP
Association (EMSA) (http://emsa.germanlloyd.org),
2001.

[15] Kim, J. and Han, S., Encapsulation of geometric
functions for ship structural CAD using a STEP

database as native storage, Computer Aided Design,
Vol. 35, 2003, pp 1161-1170.

[16] Han, S. et al., Standard Modeling Commands Set:
2003-09, iCAD Lab. KAIST, 2003.

[17] Yang, J., Han, S. and Park, S., A Method for
Verification of CAD Model Quality, Journal of
Engineering Design, Vol. 15, No. 4, 2004.

[18] Yang, J., Goltz, M. and Han, S., Parameter-Based
Engineering Changes for a Distributed Engineering
Environment, Concurrent Engineering: Research
and Applications, Vol. 12, No. 2, 2004.

 161

Appendix A: Core Commands List

 Commands list

S
k
et
ch
 c
o
m
m
an
d
s

SKETCH_Create_2D_Line_2Points

SKETCH_Create_2D_Polyline

SKETCH_Create_2D_Centerline

SKETCH_Create_2D_Rectangle

SKETCH_Create_2D_Point

SKETCH_Create_2D_Arc_Concentric

SKETCH_Create_2D_Arc_3Tangents

SKETCH_ Create_2D_Arc_CenterEnds

SKETCH_Create_2D_Arc_3Points

SKETCH_Create_2D_Circle_CenterPoint

SKETCH_Create_2D_Circle_Concentric

SKETCH_Create_2D_Circle_3Tangents

SKETCH_Create_2D_Circle_3Points

SKETCH_Create_2D_Arc_Angles

SKETCH_Create_2D_Ellipse_3Points

SKETCH_Create_2D_Ellipse_CenterPoint

SKETCH_Create_2D_Spline

SKETCH_Create_2D_Conic

SKETCH_Create_2D_Text

SKETCH_Create_2D_AxisPoint

SKETCH_Create_SketchName

SKETCH_Operate_Transform_Move

SKETCH_Operate_Transform_Rotate

SKETCH_Operate_Transform_Mirror

SKETCH_Operate_Transform_Scale

SKETCH_Operate_Offset

SKETCH_Operate_Fillet

SKETCH_Operate_Chamfer

SKETCH_Open

SKETCH_Close

S
u
rf
ac
e
co
m
m
an
d
s

SURFACE_Create_ThroughPointFromPoles

SURFACE_Create_FromPointCloud

SURFACE_Create_Sweep

SURFACE_Create_Section

SURFACE_Create_Offset

SURFACE_Create_Offset_DraftOffset

SURFACE_Create_Extrude

SURFACE_Create_Revolve

SURFACE_Create_Plane_3Points

SURFACE_Operate_Split

SURFACE_Operate_Merge

SURFACE_Operate_MidSurface

SURFACE_Operate_Trim

SURFACE_Operate_Extension

SURFACE_Operate_Filleting_Fillet_Constant

SURFACE_Operate_Filleting_Fillet_Variable

SURFACE_Operate_Filleting_Chamfer

S
o
li
d
 c
o
m
m
an
d
s

SOLID_Create_Protrusion_Extrude

SOLID_Create_Protrusion_Revolve

SOLID_Create_Protrusion_Sweep

SOLID_Create_Protrusion_Loft

SOLID_Create_Cut_Extrude

SOLID_Create_Cut_Revolve

SOLID_Create_Cut_Sweep

SOLID_Create_Cut_Loft

SOLID_Create_Feature_Hole_Linear

SOLID_Create_Feature_Hole_Counterbore

SOLID_Create_Feature_Hole_Countersunk

SOLID_Create_Feature_Slot

SOLID_Create_Feature_Groove

SOLID_Create_Feature_Pocket

SOLID_Create_Feature_Pad

SOLID_Create_Feature_Rib

SOLID_Create_Feature_Shell

SOLID_Operate_Filleting_Fillet_Constant

SOLID_Operate_Filleting_Fillet_Variable

SOLID_Operate_Filleting_Chamfer

SOLID_Operate_Trim_Body

SOLID_Operate_Draft

C
o
n
st
ra
in
t
co
m
m
an
d
s

CONSTRAINTS_Create_Dimension_Horizontal

CONSTRAINTS_Create_Dimension_Vertical

CONSTRAINTS_Create_Dimension_Arbitrary

CONSTRAINTS_Create_Dimension_Circular

CONSTRAINTS_Create_3DReference_CoordSys

CONSTRAINTS_Create_Constraint_Perpendicular

CONSTRAINTS_Create_Constraint_Tangent

CONSTRAINTS_Create_Constraint_Coincident_SameP

oints

CONSTRAINTS_Create_Constraint_Coincident_Colline

ar

CONSTRAINTS_Create_3DReference_OffsetPlanes

CONSTRAINTS_Create_Constraint_Concentric

CONSTRAINTS_Create_Constraint_Horizontal

CONSTRAINTS_Create_Constraint_Vertical

CONSTRAINTS_Create_Constraint_Symmetric

CONSTRAINTS_Create_3DReference_Plane

CONSTRAINTS_Create_3DReference_Axis

CONSTRAINTS_Create_3DReference_Curve

CONSTRAINTS_Create_Constraint_Parallel

CONSTRAINTS_Create_3DReference_Point

SELECT_Reference_Plane

SELECT_Object

 162

Appendix B: Non-Core Commands List

 Commands list
S
k
et
ch

SKETCH_Create_3D_Line

SKETCH_Create_3D_Point

SKETCH_Create_3D_Arc_3Points

SKETCH_Create_3D_Circle

SKETCH_Create_3D_Ellipse

SKETCH_Create_3D_Curve_IntersectionCurve

SKETCH_Create_3D_Curve_ProjectionCurve

SKETCH_Create_3D_Curve_Spline

SKETCH_Create_3D_Spline

SKETCH_Create_3D_PointSet

SKETCH_Create_3D_Helix

SKETCH_Operate_Pattern_Rectangular

SKETCH_Operate_Pattern_Circular

SKETCH_Operate_Pattern_UserDefined

SKETCH_Operate_Intersect

SKETCH_Operate_Divide

SKETCH_Operate_Merge

SKETCH_Delete

SKETCH_Copy

SKETCH_Reference_Plane_ReferencePlane

SKETCH_Reference_Axis

SKETCH_Reference_CoordSys

SKETCH_Reference_Curve

SKETCH_Reference_Line

SKETCH_Reference_Point

SKETCH_Reference_Section_Attach

SKETCH_Reference_Section_CrossSection

S
u
rf
ac
e SURFACE_Operate_Transform_Move

SURFACE_Operate_Transform_Rotate

SURFACE_Operate_Transform_Mirror

SURFACE_Operate_Transform_Scale

SURFACE_Delete

SURFACE_Copy

S
o
li
d

SOLID_Create_Protrusion_Helical

SOLID_Create_Cut_Helical

SOLID_Create_Feature_Pipe

SOLID_Create_Feature_Thread

SOLID_Create_Feature_UserDefined

SOLID_Operate_Boolean_Union

SOLID_Operate_Boolean_Intersect

SOLID_Operate_Boolean_Difference

SOLID_Operate_Pattern_Rectangular

SOLID_Operate_Pattern_Circular

SOLID_Operate_Transform_Move

SOLID_Operate_Transform_Rotate

SOLID_Operate_Transform_Mirror

SOLID_Operate_Transform_Scale

SOLID_Delete_Object

SOLID_Delete_Pattern

SOLID_Delete_Parameter

SOLID_Copy

C
o
n
st
ra
in
t

CONSTRAINTS_Create_Equation

CONSTRAINTS_Delete
CONSTRAINTS_Copy

